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FOREWORD

This report was prepared by the Rocket Systems Division of The Marquardt
Company under Contract NAS 3-11215, "Space Storable Thrustor Investigation'.
Tt is the final report on the subject contract.

Contract NAS 3-11215 was administered by the Lewis Research Center, Liquid
Rocket Technology Branch, of the National Aeronautics and Space Administration,
Cleveland, Ohio. The NASA Project Manager was Mr. Paul Herr.

A coordinated concurrent test firing program with the FLOX/Methane pro-
pellant combination using some of the same test hardware to evaluate new ma-
terial concepts was conducted under NASA Contract NAS 7-555, "Advanced Pyro-
lytic Spacecraft Thrust Chamber Materials". All test results are summarized
in this report. However, complete details of the advanced thrust chamber ma-
terials investigation will be reported under Contract NAS 7-555.

The following Rocket Systems Division personnel at Marquardt contributed
to the technical effort and preparation of this report: C.D. Coulbert (Pro-
grem Manager), R.J. FioRito (Project Engineer), M. Wilson (Analysis), and
J.G. Campbell (Materials and Design).
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ABSTRACT

A design, fabrication, and experimental test firing program was conducted
to demonstrate the feasibility of a radiation cooled, 100-pound thrust, liquid
FLOX/Methane, reaction control thrustor of advanced pyrolytic refractory com-
posite materials. A matching high performance FLOX/Methane injector was de-
veloped and long duration demonstration firings with chambers of pyrolytic
refractory composites, pure copper, and high density graphite established the
feasibility of the thrustor and injector design approaches which were selected.
Data are presented on injector performance, thrustor material erosion rates,
and carbon deposition characteristics.
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SPACE STORABLE THRUSTOR INVESTIGATION

SECTION I
SUMMARY

A design, fabrication, and experimental test firing program was conducted
to demonstrate the feasibility of a radiation cooled, 100-pound (445-newton¥*)
thrust, ligquid FLOX/Methane, reaction control thrustor of advanced pyrolytic
refractory composite materials.

This program included the design, fabrication, and evaluation of a match-
ing 100-pound thrust, FLOX/Methane injector which provided fuel film injec-
tion for cooling and chemical protection of the thrust chamber wall. The goal
of the program was to demonstrate a radiation/film cooled thrustor life of

1800 seconds with multiple starts at a performance level of 92% of theoretical
C* or better.

The thrust chamber material approach selected for this program was use
of a pyrolytic graphite composite structure with an immer wall of pyrolytic
graphite deposited on a structural shell of a fibrous graphite composite
(Carbitex 713).

The program was conducted in two phases. 1In Phase I, a multiple like-
on-like doublet injector with separate fuel film injection holes was evaluated
for performance and erosion/carbon deposition characteristics as a function
of chamber length, chamber material, mixture ratio, and fuel film cooling in-
jection pattern and amount.

In Phase II, demonstration firings were conducted with FLOX/Methane using
the modified injector and several chamber materials with the following sig-
nificant results:

1. Two consecutive test runs of 6L and 68 seconds duration, respec-
tively, using a copper heat sink chamber with resulting minimum
throat erosion

2. Five test runs with a high density graphite chamber accumulating
194 seconds of operation with negligible throat erosion

b Six test runs with a B}/Carbitex composite chamber accumulating
322 seconds prior to burn through

¥ The term "100-pound thrust" is a nominal engine designation and the con-
version to 445 newtons will not be repeated where the units refer only
to the nominal designation.
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b, Over 900 seconds of firing with one injector with no plugging or
overheating during operstion at efficiencies between 89 to 98%
(for chamber L* values of 10 inches and 18 inches, respectively)

During these tests, both chamber erosion and carbon deposition were evi-
dent and varied locally in the chamber from the injector to the nozzle throat
as a function of fuel film flow, wall material, O/F, L¥, and duty cycle.

It was concluded that the injector design approach was successful and,
with additional optimization, the design should be capable of providing high
performance and control of erosion and carbon deposition. Both the high den-
sity graphite and the pyrolytic carbon composite materials demonstrated high
temperature structural integrity in the FLOX/Methane combustion environment.
An optimized graphite chamber design may utilize film cooling -- along with
axial conduction, radiation, and heat sink effects -- to minimize both erosion
and carbon deposits.

SECTION II
INTRODUCTION

The primary objective of this program was to conduct a feasibility dem-
onstration of a 100-pound thrust, reaction control, radiation cooled, pyro-
lytic refractory composite thrustor using the FLOX/MEthane propellant combi-
nation. The technical effort included the design, fabrication, and evalu-
ation of a matching FLOX/Methane injector to meet the performance and dura-
bility goals of the program. The design goals for the engine were an 1800~
second life in multiple firings with a combustion performance of greater
than 92% of theoretical C*¥ with no duty cycle limitations and minimum thermal
soakback to the injector,

The thrust chamber material approach selected for this program was use
of a pyrolytic graphite composite structure with an inner wall of pyrolytic
graphite in contact with the combustion environment and with a fibrous graph-
ite outer structural shell to resist the thrust, thermal, and pressure loads.
Graphitic materials have demonstrated the greatest resistance to fluorinated
propellants and combustion products at very high temperatures (above L500°F)
(2760°K) (Reference 1). Pyrolytic graphite is the most resistant of the
graphites. However, all graphites are subject to oxidation and reaction with
the propellants and oxidizer rich products and must be either cooled or
chemically protected.

Theoretical and experimental studies (Reference 2) indicated that graph-
itic materials could operate at temperatures up to 6000°F (3600°K) if a
carbon rich boundary enviromment were maintained. These same studies and
NASA experience, as well as the criteria for pyrolytic carbon deposition,
indicated the probable deposition of carbon on hot chamber walls under some
conditions. Theréfore, it was apparent that the propellant injector design
and film injection provisions would be critical in achieving very long run
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durations with limited erosion and deposition. The high wall temperature ap-
proach with chemical film protection is attractive for the FLOX/Methane propel-
lant combination because of the small amount of fuel available (O/F ~5,0) and
the narrow liguidus range of methane.

The primary chamber material system candidate was pyrolytic graphite de-
posited on a structural shell of fibrous graphite (Cerbitex). This material
system has been developed and evaluated under NASA Contract NAS 7-555. The
characteristics of this material are summarized in Appendix B,

This space storable thrustor investigation was carried out in two phases:
Phase I -- injector design, fabrication, test evaluation, and injector modi-
fication; and Phase II -- thrust chamber design, fabrication, and test firing
evaluation. The fabrication and test firing program was coordinated with
work on the develomment and evaluation of advanced pyrolytic refractory ms-
terials under Contract NAS 7-555 (Reference %), Under the coordinated pro-
gram, additional injector hardware was fabricated and newer chamber materials
and fabrication techniques were evaluated.

The program plan and the relationship between the two coordinated test
firing programs is shown schematically in Figure 1.

SECTION III
INJECTOR DEVELOPMENT

A, Phase I Program

The Phase I investigations included the analysis, design, and fabrication
of one injector. A second injector assembly of the same design was fabricated
under NASA Contract NAS 7-555. These programs were conducted in close coordi-
nation to reduce hardware duplication and test costs. In addition, heat sink
and thin wall pyrolytic graphite test chambers were designed and fabricated
for evaluation of injector performance and streaking characteristics.

Injector cold flow spray testing and analysis were performed prior to
final injector selection. Hot firing tests of 5 to 30 seconds duration were
subsequently conducted to evaluate the injector structural, performance, and
chemical protection (streaking) characteristics. A determination of the in-
jector modifications required to improve the overall performance was accom-
plished in Phase I and incorporated into the existing hardware prior to the
Phase II program.

B. Injector Design

The primary considerations dictating the injector thermodynamic design
are discussed in detail in Appendix A (Injector design criteria for hypergolic
bipropellant rocket thrustors). Of prime importance for the design of the
100-pound thrustor injector was the requirement to provide a chemically inert

3
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film at the boundary layer of the graphite chember to prevent erosion of the
hot surface of the graphite. Film protection was required with minimum com-
promise to C¥ performance (92% C* efficiency minimum). This requirement dic-
tated a highly efficient primary combustor core element (good atomization and

mixing) and minimal interaction of combustion products with the boundary layer
film.

On this basis, a six-element, like doublet, edge impinging, spray fan,
injector core design was selected. Film injection was initially accomplished
by six equally spaced fuel jets located at the injector periphery and directed
outward toward the chamber wall at an angle of 7° (0.122 rad). An assembly
drawing of the injector is shown in Figure 2 and a close-up photograph of the
injector face is illustrated in Figure 3. The chamber pressure tap is evi-
dent at the center of the injector face. The injector was constructed of

Nickel 200 and 321 stainless steel for optimal structural characteristics and
propellant compatibility.

This injection configuration was selected because of good atomization
and mixing characteristics, insensitivity of doublet momentum angle to changes
in mixture ratio, and minimal interaction between the primasry injection core
and the fuel film injection elements at the periphery of the injector face,

A tabulation of the more important injection parameters is given in the first
two lines of Table I for the Serial Nos. O0OL and 002 injectors. It will be
noted that these injectors were designed with small differences in injection
momentum ratio and in proportion of fuel film injection for test evaluation.

The initial inJjector design favored high C* performance with minimal
film injection. However, provisions were made to increase the film injection
by enlarging the existing jets or increasing the number and distribution of
the £ilm injection jets. The last four lines of Table I show the variation
in injection paresmeters with the addition of six and twelve film injection
orifices to the basic six film jets.

A single like-doublet oxidizer and fuel test element was fabricated and
water flow tested to establish the injection passage fabrication process and
to determine hydraulic flow data for the injector metering orifices as a
basis for the final injector design. A pvhotograph of the single element
spray rig is shown in Figure 4. The flow discharge coefficients listed in
Table I were established.

C. Injector Fabrication

Three injector faceplate units containing the propellant distribution
passages and injector core elements were fabricated and water flow tested in
a flow fixture. This intermediate quality control step was performed to
extablish the proper injector hydraulic flow characteristics, doublet spray
patterns, and mass distribution. This step in the injector assembly process
allowed remedial action, if necessary, while the important metering orifice
inlets were still accessible prior to the final closure welds. The three
injector faceplates were flow checked satisfactorily and two were selected
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for completion to the welded assembly as shown in Figure 5. Electron beam
welding techniques were utilized in completing the assembly. The injector
core injection orifices (doublets) were drilled by standard precision drilling
and deburring technigues. The film injection orifices were formed by electri-
cal discharge (Elox) methods. All welds were hydrostatically pressure tested
during the assembly process. This injector was designed for use with separate
facility type propellant valves, and accordingly, the inlet connections for
both propellants are standard AN B-nut type connectors. Propellant flow
balance to the injector internal flow distribution manifolds was accomplished
by splitting the flow into two equal legs for each propellant from the facility
valve outlet line connections to the injector manifold inlets.

D. Cold Flow Tests and Results

Nonreaction fluid flow tests of the injector assembly were performed in
two categories, as follows:

1. Water flow calibration of both propellant injection systems to
establish the flow versus pressure drop characteristics and the
flow balance of the individual injection elements

2. Bifluid spray tests utilizing concurrent flow of nonreactive
propellant simulants to evaluate the injector mixing and dis-
tribution characteristics

The results of the Category 1 tests of the Serial Nos. OOL and 002 in-
jector assemblies are plotted in Figures 6 through 9. Figures 6 and 7 show
the total pressure drop versus propellant flow (water flow data converted to
propellant density). Also included in these data are the injector flow
characteristics of the injector faceplates which did not include the film
injection flow. Figures 8 and 9 are polar distribution plots showing the
percentage of total flow for individual fuel and oxidizer doublets and the
film injection jets (weepers) at design inlet conditions. The injection
pattern orientation is referenced to the oxidizer line connector inlet.

Tt is seen that both injectors show a flow balance within several percent
for both the fuel and oxidizer circuit. Figure 10 is a photograph of the
water flow spray patbtern of the Serial No. OO0L injector.

The results of the Category 2 cold flow bifluid mixing tests with the
Serial No. 002 injector are summarized in Figure 11l. The detalls of the
test setup and testing procedures are presented in Appendix C. The mixing
excellence parameter (Ey,) shown in Figure 11 is a measure of the departure
of the local mixture ratio from the overall mixture ratio. Values of E,
above 0.80 are required for C¥ efficiencies above 90%. A1l values of By
for the S/N 002-injector were above 0.85 with 7% fuel film injection.

The Serial No. 00l injector was cold flow tested for pattern uniformity
and impingement accuracy but it was not tested in the bifluid mixing test
setup because of the similarity of the two injectors and the added cost of
the testing and data reduction.
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FIGURE 6. Cold Flow Test Data for the Serial No. 001 FLOX/Methane Injector

5041-2

CORPORATION

Uardf VAN NUYS, CALIFORNIA

Report 6147

11




: 6‘]’11]6/'0/][ VAN NUYS, CALIFORNIA Report 6]-1*7

;ORPORATION

lOOO»
600 k=100
METHANE
(Sp.Gr.=0.447) O INJECTOR ASSY. S/N 002 6/21/68
400 g' A FACE PLATE S/N 002 6/11/68
L 200
‘B FLOX
= e / (Sp.Gr.= 1.443)
' o /
+ 200 ~
(a1 =
<
~ ’__100
_! /
= T 7
|—.
= 100
S e /f /
Ll
Li.
i // £
a 60&u0
" é/ /
o
> /
s 40
(AN
[
o 20
20 g
10
gm / sec
10 20 40 | 60 100 200 400
10 ¢ ] ] ] | ] ] | |
0.02 0.04 0.06 0.1 0.2 0.4 0.6 1.0

FLOW RATE -- pps
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E. Summary of Phase I Firing Tests

The injector firing evaluation tests were divided into three basic cate-
gories relative to primary test objectives, namely:

1. Combustion performance evaluation
2. Ignition compatibility evaluation

3. Influence of the injector upon the thermal and erosion character-
isties of the chamber

The injector evaluation test firings were conducted in Cell M-2 of the
Marquardt Magic Mountain Rocket Test Laboratory (see Appendix D) at embient
pressure exhaust conditions. The propellants used were liguid FLOX (82.5%
Fo + 17.5% Op) and liquid commercial methane (87.5% CHy + 11.6% CoHg).

All of the thrust chamber designs used in this program, including
the heat sink and streak chambers, are discussed in Section 1V.

Table IT summarizes the firing tests which were accomplished and some
of the pertinent performance values which were obtained during the injector
evaluation test phase.

Runs 1 through 10 were conducted to evaluate combustion performance, as
well as to make the necessary improvements to the test facility, instrumen-
tation, and run procedures as indicated by actual test operation. These
tests were conducted with copper heat sink chambers. The effect of three
chamber I* geometries (chamber length change only) upon combustion perform-
ance was evaluated (Figure 12). The effect of mixture ratio on combustion
performance is shown in Figure 13.

Runs 11 and 12 were made with graphite chambers and they were intended
to evaluate the streaking and erosion characteristics. However, it became
apparent during these tests that ignition overpressures were being en-
countered which exceeded the structural limits of the graphite chambers.
Consequently, Runs 13 through 43 were conducted to establish a reliable
ignition approach which would eliminate or limit the overpressures to ac-
ceptable levels. The parameters chosen for investigation to decrease the
ignition' delay time were:

1. Propellant synchronization (oxidizer lead or lag) influencing
the ignition O/F ratio

2. Propellant thermodynamic state at ignition (1igquid phase versus
gas phase, or combinations thereof)

3, Propellant reactivity (GF2 lead shead of FLOX)

Since the test engine configuration did not include close-coupled
flight type valves, (Facility Annin valves located approximately 15 inches

17
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(38 em) upstream from the injector were utilized to control the propellant flow
to the engine), it was not practical to obtain precise synchronization of pro-
pellant flows to the engine during the ignition cycle. Oxidizer lead, fuel
lead, and simultaneous propellant valve opening were investigated.

It was established during Runs 13 through 17 that low energy (minimum
overpressure ) ignitions could be reliably accomplished by the introduction of
gaseous propellants during the ignition cycle. This was accomplished by
chilling the propellant system upstream from the propellant run valves to liquid
conditions, but allowing the engine and propellant lines downstream from the
run valves to remain at ambient temperature conditions. However, this pro-
cedure was not acceptable, as indicated by Run 18. The transition from satur-
ated vapor to saturated liguid could not be accomplished in a reasonable time
period. The engine performance was erratic and, generally, at a lower level
during the period of variable propellant quality.

Rung 19 through 28 evaluated a revised ignition procedure which consisted
of the following sequence of operations:

1. A 1 second oxidizer lead. The temperature of the oxidizer at the
starting cycle was controlled to give partial vaporization of the
oxidizer.

2. Minimum (saturated liquid) temperatures were maintained in the
fuel system and cold No purge was maintained through the engine.

This procedure resulted in partial success, but completely reliable
ignitions could not be maintained due to the difficulty in achieving accur-
ate control of the two-phase oxidizer lead.

Runs 29 through 37 were accomplished to evaluate a revised ignition pro-
cedure. This procedure was intended to reduce the energy level at ignition
by minimizing the propellant flow rate through the introduction of vapor-
ized fuel. Accordingly, the procedure which was evaluated was as follows:

1. A 1 second FLOX lead with the temperature of the complete oxi-
dizer system and oxidizer side of the engine down to the satur-
ated liquid temperature

2. A one-half second gaseous CH flow at a regulated pressure of
400 psig (276 N/cm=) 1ntroduced downstream from the propellant
run valve

3. Introduction of CHy with the complete fuel system and fuel side
of the engine at near-saturated liquid temperatures

The test results of Runs 29 through 37 (Table III) indicated marginal
and nonrepeatable ignition characteristics which were unacceptable. Runs
38 through L4 were then performed to evaluate the reactivity (hypergolicity)
of gaseous Fp relative to FLOX. It was postulated that the higher reac-
tivity of GFo would minimize the ignition delay and allow quick transition
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to steady state liguid phase injection. Accordingly, the following ignition
sequence was evaluated:

1. A 1 second GFp lead, at a supply pressure of approximately 240
psig (165.5 N cm?), introduced downstream from the facility valve

2. The introduction of liquid methane with the complete fuel sys-
tem and fuel side of the injector at near-saturated liquid tem-
peratures

3. Three seconds later, introduce FLOX and cut GF,. The complete
oxidizer system and the oxidizer side of the injector were cooled
to saturated liquid temperatures at the start of the run.

This approach resulted in reliable low pressure ignitions and minimsl
transition time to steady state ligquid flow conditions and the procedure was
utilized for the concluding tests in evaluating streaking and erosion in the
PG and POCO thrust chambers.

Runs 45 through 47 were conducted for long run durations with graphite
chambers having I¥ values varying from 10.6 to 18 inches (26.92 to 45.72 cm).
The effect of IL* = 10.6 (26.92 cm) is noted for Run 46 during which the (¥
efficiency was reduced to the 84 to 88% level, compared to C* efficiencies
of 93 to lOO% for the I¥* = 18 tests. Performance correlation data for Runs
29, 45, and 47 are listed in Table II.

F. Chamber Erosion and Deposition

Table IV summarizes the results of the Phase I erosion tests of the free
standing PG streak chambers and the POCO chambers. The wall thicknesses of
the PG streek chambers prior to firing (as received) are listed in Figure 1h.
After firing, the streak chambers had circumferential nonuniform erosion at
both the injector chamber interface and the throat. The throat wall erosion
rates were 0.0 to 0.00074 in./sec (0.00188 cm/sec). The injector chamber
interface wall erosion rates were 0.0 to 0.00170 in./sec (0.00432 cm/sec) in
line with the film orifices and 0.00075 to 0.0035 + in./sec (0.00191 to
0.00889 cm/sec) between the film orifices. The 0.0035 + in./sec (0.00889
em/sec) rate occurred during Run 45 in which the chamber wall was eroded
through (Figures 15 and 16).

Figure 17 represents a radially magnified view of the POCO chamber throat
erosion and the locations. Similar enlargements of the erosion and deposition
locations in the free standing PG chambers during Runs 25 and 47 are shown in
Figures 18 and 19, respectively. It is also seen from these figures that the
maximum erosion near the injector face occurred at circumferential locations
between the oxidizer doublets.

It is hypothesized that this effect was caused by the local interaction
of the oxidizer fans with the mating fuel doublets. The high release of com-
bustion gases caused local high radial flow components which impinged upon and
reacted with the hot chamber walls in the absence of adequate chemically pro-
tective film.
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6 b C cl@c[)
INSIDE
CHAMBER 0UT§(DE(DI§METER DIAETER T?;CK?EZ?
SERIAL tn. tcm in. (cm) .
No.
D ® ©) ® ® ©) ®
001 1.176 | 0.928 | 1.529 | 2.035 | 0.821 | 0.064 | 0.053
(2.987) |(2.357) |(3.383) | (5.144) (2.085) {(0.163) {(0.135)
002 1.176 | 0.931 | 1.528 | 2.013 | 0.814 | 0.066 | 0.057
(2.987) [(2.365) |(3.881)|(5.113)| (2.068) |(0.168) | (0.145)
00 1.168 | 0.932 | 1.525 | 2.022 | 0.827 | 0.062 | 0.051
3 (2.967) |(2.367) |(3.874) | (5.136)}| (2.101) {(0.157) | (0.130)
ol 1.177 | 0.931 | 1.531 | 2.022 | 0.827 | 0.062 | 0.052
0 (2.989) |(2.365) |(3.889) | (5.136) | (2.101) |(0.157) | (0.132)
00 1.171 | 0.928 | 1.528 | 2.014 | 0.827 | 0.063 | 0.053
5 (2.97%) [(2.357) | (3.881) | (5.116)| (2.101) |(0.160) | (0.135)
006 1.173 | 0.929 | 1.528 | 2.021 | 0.826 | 0.066 | 0.053
(2.979) |(2.360) |(3.881) | (5.133)| (2.097) |(0.168)|(0.135)
00 1.174 | 0.937 | 1.529 | 2.010 | 0.822 | 0.063 | 0.053
/ (2.982) |(2.355) | (3.88L) | (5.105)| (2.088) |(0.160) | (0.135)

* THICKNESS MEASUREMENTS AT STATIONS () and D

FIGURE 1k.

50L41-9
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Wall Thicknesses of PG Streak Chambers Prior to Firing
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EROSION SCALE 25 : 1

INJECTOR SCALE 3 : 1

X24401 INJECTOR S/N 002
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— —— ORIGINAL DIAMETER = 0.830 in.

FIGURE 17. Radially Magnified View and Location of Erosion
of the POCO Chamber Throat after Run 46
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FIGURE 18. Radially Magnified View and Location of Erosion
of the Serial No. 002 PG Chamber Throat after Run 25

5041=11
26




arquardi VAN NUYS, CALIFORNIA Report 6]_)47

CORPORATION

OXIDIZER
INLET

OXI1DIZER DOUBLET
LOCATIONS

CHAMBER CROSS SECTION AT INJECTOR FACE
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X24401 INJECTOR S/N 002
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FIGURE 19. Radially Magnified View and Location of Erosion
of the Serial No. OO4 PG Chamber Tnroat after Run LT
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Photographs of deposits in line with the film orifices are shown in Figures
20 and 21. The depositions and erosions indicated that redesign of the injector
with new film orifices at the injector chamber interface would alleviate the
erosion problem. These additional orifices were designed to impinge the f£ilm
at the injector-chamber interface in line with and between the oxidizer ori-
fices. This redesign was also made to increase the £ilm mass flow from 10% to
25 and 55% of total fuel flow for the Serial Nog. 002 and 00l injectors, re-
spectively. The chamber temperature distribution (determined from XR film for
Run 47) is presented in Figure 22. Typical wall temperatures for the 20 second
test runs were in the 2700° to 3000°F (1755° to 1922°K) range (Figure 23).

G. Injector Modifications

From the free standing PG streak chamber firing results of Fhase I, it was
obvious that maximum graphite erosion was occurring on the wall at the plane of
the injector face and in line with the intersection of the impinging oxidizer
fans (see Figure 16). The 0.005-inch (0.0127 cm) diameter fuel film jets were
being bypassed because they impinged on the wall about one-half inch down-
stream from the injector face. Also, it was observed that maximum carbon depo-
sition on the chamber wall occurred in line with the fuel film Jets.

The final injector configuration (shown in Figures 24 and 25) contained
18 fuel film injeetion holes, each of 0.005-inch (0.0127 cm) diameter. This
modification to the Serial No. 001l injector provided 35% fuel film flow. Six
of the jets were the original jets which were directed 7° (0.122 rad) outward
and located radially in line with the oxidizer doublets. The twelve additional
holes were Eloxed into the fuel manifold from the outside wall of the injector
and they were directed 26° (0.454 rad) outward to impinge on the chamber wall
exactly in the plane of the injector face. These holes were located radially
in line with each fuel and oxidizer doublet.

The fuel film injection streams are shown in the cold flow pattern of Fig-
ure 26. The film impingement pattern in a plastic chamber with only the cooling
jets flowing with water is shown in Figure 27. The holes were accurate and
clean and the impingement pattern was uniform. However, there were still un-
protected areas at the plane of the injector face, as was borne out by subse-
quent firing tests. A typical erosion pattern is shown in Figure 28, showing
small pits in the chamber wall near the plane of the injector face. The down-
stream erosion characteristics, however, were significantly improved as shown
in Figure 29.

Accordingly, the final configuration also included the addition of a short
deflection ring welded to the face of the injector just outside the circum-
ference of the oxidizer doublets. This modification was very effective in re-
ducing the local erosion of the wall near the injector face.

Tntermediate injector modifications were made and test fired initially
during the Phase II testing. The results are reported in Table V for Runs 1
through 15. The final configurations for the Serial Nos. OOL and 002 injectors
were used for all test runs subsequent to Phase IT Run 15. The intermediate
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End View of Thin Wall PG Chamber Exit after Run L5

FIGURE 21.
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“— CAMERA FIELD
OF VIEW

CHAMBER S/N PG 004 O/F =3.5

INJECTOR X24401 S/N002 P, =101.4

RUN NO. 47 12 SEC. FROM FLOX VALVE ON
TEST NO., 6056 TEST DATE 9/9/68
MEASURED WITH XR FILM -- FLOX / METHANE

V69754
FIGURE 22. Distribubticn of PG Chamber Temperatures, Run 47
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FIGURE 23. Distribution of BG Chamber Temperatures, Run 25
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OXiDIZER
INLET

5/

ORIGINAL ID

= 1.410 in. I OX1D1ZER DOUBLET
(3.580 cm) , LOCATIONS
FUEL
INLET

VIEW LOOKING TOWARD INJECTOR FACE
X22401 INJECTOR S/N 001 (18 WEEPERS)
PG CHAMBER No. SL11

i* = 14 in.(25.6 cm)
P = 97 to 141 psia (67 to 97.1 N/cm?)
n.= 949

c
RUN DURATION = 20 sec

EROSION MAGNIFIED 25X

FIGURE 28. Erosion Pattern of Chamber No.S8L-11 at Plane of Injector
after Run 13
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ORIGINAL WALL

THICKNESS

= 0.058 in.
(0.147 cm)

ORIGINAL ID
= 1.410 in.
(3.580 cm)

OXIDIZER DOUBLET

1, LOCATIONS

OXIDIZER
INLET

VIEW LOOKING TOWARD INJECTOR
X24401 INJECTOR S/N 001 MOD. (18 WEEPERS)
EROSION MAGNIFIED 25X

FIGURE 29. Wall Thickness of Chamber No. SI-11at 0.75 inch from
Injector Face after Run 13
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injector modifications included testing with the twelve new fuel film holes
flowing and the original six film holes closed. Downstream PG chamber erosion
increased (Run 14) as shown in Figure 30. Consequently, the downstream set

of six film injection Jets were included in the final injector configuration.

When the splash ring was originally welded on, the axial length was made
0.312 inch (0.792 cm). After Phase IT Run 14, the length of the splash ring
on each injector was cut back to 0,10 inch (0.254 cm) to eliminate overheating
and burning of the ring. No overheating of the ring or injector was experi-
enced on all subsequent test firings.

SECTION IV
THRUST CHAMBER DEVELOPMENT

A. Thrust Chamber Design

The thrust chamber design evaluated during this program was based both
on design criteria selected at the beginning of the program and on those cri-
teria established ag a result of the Phase I injector development tests. The
criteria selected at the beginning of the program included:

1. Chamber materials and wall thickness

2. Chamber contraction ratio and internal configuration

3. Injector/chamber joint design

Chamber design criteria selected on the basis of injector development in-
cluded:

1. Chember length (L¥)

2. Film coolant flows and injection pattern

As a result of the final Phase II test firing program, recommendations
for further optimization of the design criteria were defined. The various

chamber design criterias are discussed below.

B. Thrust Chamber Materials

Two basic rocket thrust chamber material concepts which were available
included the use of ductile metallic chamber materials, which must be cooled
to safe operating temperatures, or refractory materials capable of operation
at near the propellant flame temperatures but which must be chemically pro-
tected. The objective of this program was to evaluate the refractory ma-
terial approach, specifically graphitic materials. Two recent developments
in graphitic materials which hold promise of superior performance in thrust
chambers are the high strength carbon fiber composites and pyrolytic graphite.
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! ORIGINAL WALL

THICKNESS

= 0.050 in.,
(0.127 cm)

7
ORIGINAL ID
= 1.422 in.

(3.610 cm)

OXIDIZER DOUBLET
1 LOCATIONS

OXIDIZER
INLET

VIEW LOOKING TOWARD INJECTOR
X24401 INJECTOR S/N 001 MOD. (12 WEEPERS, HI ANGLE)

EROSION MAGNIFIED 25X

FIGURE 30. Wall Thickness of Chamber No.SL-1at 0.75 inch from
Injector Face after Run 1k
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Under NASA Contract NAS 7-555 (Reference 3) and preceding programs (References
4, 5, and 6), the production, fabrication, characterization, and test evalu-
ation of pyrolytic refractory materials were investigated. A material system
which combines the strength and fabrication flexibility of the carbon fiber
composites with the surface quaslity and erosion resistance of pyrolytic graphite
was achieved by depositing pyrolytic graphite (PG) on the surface of a thrust
chamber shell of a filament wound carbon fiber composite (Carbitex 713) de-
veloped by The Carborundum Company, Graphite Products Division. The strength
and related physical properties of the material system obtained under Contract
NAS T7-555 are summarized in Appendix B.

The selection of a Carbitex wall thickness and FG coating thickness in the
chamber design shown in Figure 31 was based on the fabrication experience with
this system. As the Carbitex wall thickness is increased much beyond one-
quarter inch in small chamber sizes, the internal delaminations tend to in-
crease. The Carbitex wall thickness and PG coating thickness were selected as
the nominal maximum for a sound fiber composite structure. The operating hoop
stresses in the Carbitex due to chamber pressure (at 100 psia (68.9 N/cm?))
were less than 400 psi (275.8 N/em?). Thermal stresses in the Carbitex due to
firing were calculated to be less than 800 psia (551.6 N/cm2). Circumfer-
ential thermal stresses in the inner PG layer coating during firing would be
compressive and were estimated to be between 4,000 and 8,000 psi (2758 and
5516 N/em?). These estimates were based on analyses made for similar designs
used in other programs (Reference 7). Since these stresses were not critical,
further analyses of this design layout were not made.

C. Chamber Contraction Ratios and Internal Configuration

The selection of contraction ratio was based on several considerations
but the ratio was not necessarily optimized. The choice of & minimum contrac-
tion ratioc was favored by the requirement to distribute the small amount of
fuel coolant film uniformly over the chamber circumference through a limited
number of small diameter injection holes. The minimum nominal injection hole
diameter was 0.005 inch. A minimum contraction ratio also decreases the ex-
posed injector face area subject to heat transfer from the hot gases and from
the chamber walls after shutdown. A contraction ratio of 3.0 was selected on
the basis of successful chamber designs at Marquardt (Reference 8) and Pratt
and Whitney (Reference 9).

For a fixed value of chamber volume (I¥) and wall temperature, the total
heat flux from the combustion gases in the chamber to the walls is almost in-
versely proportional to the contraction ratio, so that, for highly cooled
walls typical of a film-conduction cooled (inter-regenerative) chamber, a
larger contraction ratio and a shorter chamber length is advantageous. How-
ever, when the film is used only for chemical protection, a carbon rich
boundary zone can be maintained over longer axial distances through the nozzle
throat region by fuel injected into the boundary layer from the injector face.
This has been borne out by the carbon deposition experience in this program.

The internal nozzle configuration (curvature) was based on criteria for
minimum residual stress in the pyrolytic graphite coating. A throat radius

b1
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of curvature of twice the throat diameter was found satisfactory in an Air
Force supported study of this parameter (Reference 8).

D. Injector/Chamber Joint Design

A tapered and lapped seat joint design (Figure 32) was selected for this
chamber design because it was found to be completely satisfactory in two pre-
vious programs (References 8 and 3) for use with pyrolytic graphite chambers.
In cases where the injector can be designed to match the chamber, the problems
of leakage, heat soakback, and film injection optimization are readily re-
solved. Several alternate seal designs could have been used in this program,
but the tapered seat was selected for convenience in accommodating the PG/
Carbitex design along with free standing PG and multilamina pyrocarbide chamber
configurations to be evaluated under Contract NAS 7-555. The possibility of
chamber axial misalignment using the tapered seat should be evaluated in
greater detail, but no indications of chamber cocking on the seat were en-
countered during this program.

E. Chamber Length

For the copper heat sink chamber, an L¥ range of 12 to 18 inches (30.48
to L45.72 em) was selected to cover a chamber length predicted to yield at
least 92% (¥ efficiency. As indicated by the test firing results, these two
chamber lengths did bracket the performance goal of the program. An IL¥* of
15 inches (38.1 cm) was selected as the minimum value capable of meeting the
performance goal with the increased fuel film protection incorporated in the
final injector configuration.

F. Streak Chamber Design

The primary purpose of the streak chambers was to reveal streaking visu-
ally after a short firing run with the FLOX/Methane propellants. The streak-
ing due to the injector characteristics could cause either local overheating
of the chamber walls or excess erosion due to oxidizer rich zones. Inasmuch
as graphite is subject to erosion by oxidation and the oxidation rate is a
function of surface temperature, the streak chambers should be of graphite
and should heat up rapidly. Further, the chambers should be relatively in-
expensive.

Candidate streak chamber materials considered in this program included
the following:

Free Standing PG - Fast temperature response, good temperature simu-
lation, local temperature response visible from outside for XR film
temperature documentation (see Appendix E).

Stainless Steel - Fast temperature response, streaking visible during
firing for XR film documentation, streaking visible in temperature
stains for posttest observation, easy to install thermocouples for
transient temperature documentation, operating temperature limited to
less than 2500°F (164L°K).
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Byrolytic Graphite Sleeves in Heat Sink Chamber - PG sleeves can be in-
stalled in graphite or copper chambers, good temperasture response simu-
lation, erosion and deposition characteristics well simulated, readily
replaced low cost sleeves, film impingement pattern visible after run,
difficult to measure transient temperatures, not suitable for pulsing
or restarts if propellant can seep between liner and chamber.

Carbon/Phenolic Ablative - In the form of an insert in a structural shell,
erodes more readily than PG, good temperature response, thermocouples

can be installed in limited fashion, geometry changes can be readily in-
corporated in partially finished inserts, excessive erosion may mask
carbon deposition effects.

Asbestos/Ehenolic Ablative - High erosion rates may define streaking
characteristics but not be related to relative oxidation and tempera-
ture response of a PG lined chamber.

Machined Graphite Chamber - Low cost, easy to install thermocouples,
easy to alter configurations in partially machined chambers, heat
sink effect slows temperature response, high strength graphite
(POCO-AXF-5Q) may be used in free standing concepts at high tempera-
tures.

Grooved Thick Wall Copper - Low cost, readily machined, eagy to in-
stall thermocouples, can be used to measure local heat flux distri-
bution, does not reveal chemical composition streaking, film im-
pingement pattern revealed in chamber stains, limited to low wall
temperatures.

For this program, the free standing PG chambers (Figure 33) and the
POCO-AXF-5Q chambers (Figure 3h) were selected because the high temperature
streak effects were of specific interest. The POCO heat sink chambers al-
lowed longer run times for evaluation of injector durability and the effect
of deposit buildup. However, the high thermal conductivity of the POCO/
graphite and its inherent erosion resistance made it less sensitive to
streaking than the PG material.

Tn the Phase I tests, the longer L¥* value (18 inches (15.72 cm)) was
selected for the PG chambers to provide maximum chamber length for streak
development. In the Phase II tests, the final L¥ of 15 inches (38.10 cm)
was selected to better simulate the throat heating and streaking condition.
POCO chamber L% values of 10 and 15 inches (25.40 and 38.10 cm) were used to
provide additional IL¥* range for injector performance.

For future streak chamber testing, consideration may be given to the use
of low conductivity castable carbon/phenolic replaceable inserts in a POCO-
AXF-5Q structure shell in order to evaluate the high temperature streak ef-
fects and to achieve a faster surface temperature rise and higher erocsion

rates.
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Composite Chamber Fabrication Techniques

The normal fabrication sequence for a PG/Carbitex composite thrust chamber
as applicable to this program was as follows:

1.

Detailed chamber fabrication drawings were sent to The Carborundum
Company, Graphite Products Division at Niagara Falls, N.Y. with the
Carbitex wall thickness shown and surplus inlet and exit length
indicated for final trimming after PG deposition.

The Carborundum Company filament wound the chamber wall thickness
with graphite yarn (dry) over a chamber contoured graphite male
mandrel. Sufficient excess graphite filament wall thickness is
provided for inside and outside final machining to the required
dimensions.

After winding, The Carborundum Company impregnated the yarn with
a proprietary resin system and subjected the part to a curing,
pyrolyzing, and graphitizing furnace cycle requiring some thirty
days.

Following the furnace processing, the chamber was machined in-
ternally and externally. The graphite mandrel was removed by
machining and a final machined surface was produced by grinding

(Figure 35).

The Carbitex thrust chamber shell was returned to Marquardt
where it was inspected, X-rayed, and pressure checked.

A detailed fabrication drawing and the Carbitex chamber were
then shipped to the selected PG coating vendor. This capability
resides with several companies. Super Temp Company of Santa Fe
Springs, California was selected as the PG vendor for this
program.

The Carbitex chamber was set up and processed within the G
deposition furnace with proper manifolding to direct the methane
source gas through the chamber to produce the required PG coat-
ing thickness on the surface of the Carbitex. The coating may
be deposited all on the inside or both inside and outside simul-
taneously with a desired thickness ratio.

After coating, the chamber was returned to Marquardt for final
trimming, inspection, lapping of the injector sealing surface,
and pressure checking. The inside surface and throat dimensions
were left in the as-deposited condition. In production, these
dimensions can be held to satisfactory tolerances without ma-
chining.
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H. Thrust Chamber Fabrication

1. Free Standing Streak Chambers

Free standing pyrolytic graphite streak chambers (Figure 33) were
fabricated by the Super Temp Company of Santa Fe Springs, California. The
nominal wall thickness of these vapor deposited PG chambers was 0.050 inch
(0.127 em). The actual wall thickness and chamber diameters measured prior to
Phase I test firing are listed in Figure 14. The nominal L¥ of these chambers
was 18 inches (45.72 cm), the value selected to achieve maximum injector per-
formance and exposure of the chamber to the highest temperature gases.

After the streak chambers were received at Marquardt, the sealing
surface of the PG at the injector end of the chamber was lapped using the tool
shown in Figure 36.

A1l of the streak chambers were Zyglo-inspected for cracks except
the Serial No. 00l chamber, which had structurally failed in Test Run 11. No
defects were detected in Serial No. 002 and Serial No. 005 chambers. Visu-
ally perceptible surface defects detected on the Serial Nos. 0035 and 006
chambers were surface blemishes. Cracks detected on the Serial Nos. OOk and
007 chambers were not observed on the inner wall of these chambers, and it was
concluded that the defects on the Serial Nos. 003, 004, 006, and 007 chambers
were only surface defects.

The test fixture used for pressure tests of the pyrolytic graphite
chambers is shown in Figures 37 and 38. The following procedure was used for
making the pressure tests:

1. The chamber was positioned on the stand and the bolts were
tightened to a torque of 2 to 3 in.-1b (22.6 to 33.9 cm-N).
The bolts were tightened in a 360° (6.283 rad) sequence to
agssure an even distribution of stress on the O-ring.

2. The water and nitrogen lines were attached to the AN
fitting on the bottom of the fixture.

5. The long shaft was adjusted so the throat plug and the
throat O-ring were on the exit side of the throat.

b, The chamber was filled with water, carefully purging all
air from the chamber as a safety precaution,

5. The throat was then sealed by turning the plug into it and,
when no leaks occurred, the chamber was pressurized to 90
psig (62.1 N/em2) at a rate of approximately 1 psi/sec
(0.69 N/cm?/sec).

6. Nitrogen was used to pressurize the water in the chambers to
the desired check value. Tests to 120 psig and 200 psig
(82.7 and 137.9 N/cm?) were obtained by using increments of
approximately 1 psi/sec (0.69 N/cm?/sec).
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FIGURE 37. Test Fixture Used for Pressure Tests of
F,»olytic Graphite Combustion Chambers
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The seven PG streak chambers were proof pressure tested to the
following pressures:

Chamber Fressure
Serial No. psig N/cm2

001 120 82.7
002 120, 200 | 82.7, 137.9
003 120, 200 | 82.7, 137.9
00k 120, 200 | 82.7, 137.9
005 120, 200 | 82.7, 137.9
006 120, 200 | 82.7, 137.9
007 120, 200 | 82.7, 137.9

2. POCO Graphite Chamber

Two POCO graphite chambers (Figure 34) were machined from billets of
POCO-AXF-5Q graphite in accordance with design drawing X24L88 (Figure 39) as
follows:

Serial No. 001 -- L = L4 inch (10.2 cm)

Serial No. 002 -- T, 2.8 inch (7.11 cm)

i

Bach chamber was proof pressure checked to a pressure of 500 psia before
testing.

5. Copper Chambers

Two copper thrust chambers (IL* = 12 in. (30.48 cm) and I#* = 18 in.
(45.72 em)) in accordance with design drawing X2Wh88 (Figure 39) were used
for the initial FLOX/Methane performance tests. Three Cr-Al thermocouples
were installed along the wall of each chamber (Figure 40). The I* = 18 inch
(45.72 cm) copper chamber had a Kistler pressure transducer tap installed to
permit evaluation of the ignition spike.

L.  Pg/Carbitex Chambers

The original program schedule provided for the final design and
ordering of an altitude configuration (12:1 exit) Carbitex chamber from The
Carborundum Company after review of the Phase I injector evaluation tests.

The initial projected fabrication time for the filament wound Carbitex cham-
ber was 12 weeks with a lL-week additional period scheduled for coating the
chamber inner wall with an 0.040O-inch (0.102 cm) layer of PG. Delays in order-
ing the chamber and an extended delivery schedule precluded on-time fabrication
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of the final EG/Carbitex composite chamber within the program schedule. There-
fore, an alternate plan to meet the program objectives was initiated.

Three FG/Carbitex thrust chembers with sea level exit nozzles and an
I* of 18 inches (45.72 cm) were being fabricated for structural evaluation
under Contract NAS 7-555. A revised test chamber configuration was designed
in which a 12:1 exit nozzle extension fabricated of a PG/carbon felt composite
(RPG) was added to the sea level Carbitex chamber (Figure 31). The RFG exit
cone was attached to the Carbitex chamber by a threaded joint. The chamber
and nozzle were then coated inside and outside with an 0.04O-inch (0.102 cm)
layer of PG. The chamber is shown as tested in Figure 41 connected to the
injector and a Marguardt valve assembly. TFigure 42 is an X-ray photograph
which shows the threaded joint and also reveals a separation between the outer
FG layer and the Carbitex. The inner PG layer was well bonded to the Carbitex.

The outside of the exit nozzle downstream from the threaded Jjoint
was trimmed to remove the loose PG layer and to fit the no-flow exit diffuser
used to provide the test altitude simulation.

SECTION V
PHASE II -- FINAL THRUSTOR TESTS

During the period 28 December 1968 through 11 February 1969, thirty hot
firing runs were made with FLOX/Methane in Cell M-2 of The Marquardt Magic
Mountain Rocket Test ILaboratory. The test runs are summarized in Table V.
Briefly, the test items and firing durations were ag follows:

1. Heat sink copper -- two chambers, No. 1 ; 8 runs, 45 seconds
No. 2 ; 3 runs, 141 seconds

2. Free standing PG -- three chambers; 3 runs, 58 seconds

3. POCO graphite -- one chamber; 5 runs, 194 seconds

4. Multilamina pyrocarbide -- one chamber; 1 run, 60 seconds

5. PG/Carbitex (sea level) -- one chamber; 1 run, 40 seconds

6. Pg/Carbitex (with 12:1 exit) -- one chamber; 6 runs, 322 seconds

Essentially all of the 860 seconds of run time listed above was ac-
cumulated with one injector with no indication of injector plugging or over-
heating during operation (Figure 43),.

The PG/Carbitex chamber (SL-3) with an I¥ of 18 inches (45.72 cm), which
was fired for 322 seconds, had been modified by attaching a 12:1 exit nozzle
of a PG/carbon felt composite (RPG). The joint was formed by threading the
exit nozzle and chamber. The inside and outside of the assembly were coated
with a 0.040-inch (0.102 cm), layer of PG.
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During the first 60 second firing run with the above chanber at altitude
conditions using the no-flow ejector, the exit nozzle extension apparently
failed early in the run. The mode of failure of the exit cone is not known
since the parts of the cone were ejected sideways into the altitude bell rather
than downstream. There was no sign of burning or erosion on the cone pieces.
One possible explanation is that a lateral deflection of the chamber assembly
against the diffuser inlet occurred during the start transient and cracked the
exit cone.

After the first firing, the chamber was removed from the cell and ex-
amined. There was very little throat erosion. There was carbon deposit build-
up within the chamber and throat. There was some minor local erosion at the
injector end of the chamber. There did appear to be several hairline cracks
in the PG inner wall. The appearance of the chamber was similar to that of
the first PG/Carbitex chamber (SI-1) (Figure L44) which had been fired for 4O
seconds.

The first PG/Carbitex chamber (Figure 4kh) (which also developed hairline
cracks ) was pressurized after the 4O second firing run. At 50 psi (3L.5 N/cm?),
pressure did leak through the wall at the throat. It should be noted that all
the uncoated 100-1b Carbitex chambers leaked gas at all pressures when they
were pressurized to 100 psig (68.9 N/cm?) prior to coating.

Test firing of PG/Carbitex chamber SI-3 with FLOX/Methane was continued
for five more runs. The maximum firing durations were limited by the pressure
drop increases across the FLOX line filter. It is postulated that this was due
to solid crystals of HF, since after each run, when the filter was allowed to
heat up, the blockage disappeared. It was the objective of this firing series
to run until some definite failure occurred in the chamber. At the beginning
of the sixth run, after successful runs of 60, 47, 60, 71, and 68 seconds,
there was an apparent burn through. Examination of the chamber after the run
showed failure due to gradual erosion through the PG coating on the wall ahead
of the throat and then a more rapid burn through in the Carbitex. The EK;
inner wall in the throat region showed nearly uniform circumferential erosiom.
At local areas,where a very thin coating of PG remained, the BG/Carbitex bond
remained intact. There was no tendency for the PG to separate from the inner
wall of the Carbitex. The hairline cracks did not initiate any local erosion
or failure (Figures 45 and L6).

The estimated PG erosion rate over the total burn time (0.040/322) is
about 0.12 mil/second at the pressure, temperatures, and mixture ratios in-
volved.

Also noteworthy were the results of long firing runs with both the copper
and the POCO graphite heavy walled chambers. Runs of 30, 60, and 90 seconds
were obtained with the POCO graphite chamber. The erosion pattern at the
completion of these runs is shown in Figure 7. Throat erosion was almost
negligible during these runs. The carbon deposition was much less than in
the PG lined chambers, due primarily to the lower transient wall temperatures
(Figure 48).
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FIGURE 47. Erosion Pattern of the POCO Graphite Chamber after Runs 10, 11, and 18
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Two 65 second firing runs were made with the copper heat sink (I* = 12 in.
(30.48 cm)) chamber to evaluate the heat transfer characteristics of the in-
Jector. The throat wall temperature at the end of each firing run was about
1450°F (1061°K) but still increasing (Figure 49). Some uniform throat erosion
did occur at these temperatures as shown in Figure 50. Minor localized carbon
deposition occurred (Figure 51). These data were further analyzed for com-
varison with analytical predictions and to evaluate the effectiveness of the
fuel film cooling and conduction effects (Figure 52).

Average throat erosion rates for the Phase IT tests -- obtained by divid-
ing the throat radius change by run time -- are summarized in Table VI.
SECTION VI

THERMAL ANALYSES

A, Free Standing PG Chambers

The test results obtained during Run 47, FPhase I, Test No. 6056 were
analytically verified. This test utilized a free standing PG chamber with a
wall thickness of 0.052 inch (0.132 cm) at the throat. The extended range
(XR) film for that run is shown in Figure 22. The only other data available
was an XR photo from Run 25 (Figure 23). During part of Run 25, however, an
oxidizer valve was only partly open and the temperature results from the run
are not meaningful. It is interesting to note, however, that wall tempera-
tures indicated on the XR film for Run 25 were higher than those from Run 47,
despite the shorter run time, greater percentage film cooling, and lower cham-
ber pressure. This effect is due to the fact that the mixture ratio of Run
25 was close to stoichiometric whereas the mixture ratio of Run 47 was con-
siderably below the stoichiometric ratio.

Figure 53 shows theoretical transient temperatures for the inner and
outer walls at the throat for the conditions of Run 47 with and without car-

bon deposits. It can be seen that steady state conditions had been reached
when the XR photo was taken (12 seconds into the run).

The assumed run conditions were as follows:

101.h psi (69.9 N/cme)

P =
c
T = 5700°F (3422°K) (Taken from Reference 10 for O/F = 3.5
o X
and assuming T, = 0.975 as measured )
n = 0.000k Btu/in.2 sec °F (0.1178 Joules/cm® sec °K) for
g leminar flow at the throat

The thermal properties of PG were taken from Reference 8. The outside
surface emissivity was taken as 0.8. Since only about 7% of the total fuel
flow was used for film cooling in Run h?, the effect of the cooling film at
the throat was assumed to be negligible.
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FIGURE 52. Comparison of Throat Temperstures from Firing Tests
of the 100-pound Thrust Copper Heat Sink Chamber
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Figure 53 shows the steady state outside wall temperature at the throat to
be 3200°F (2033°K). This compares with the test result of 2820°F (1822°K) shown
in Figure 22. However, as shown in Figure 21, a carbon deposit was found around
the throat area of the chamber. This layer increases the thermal resistance of
the wall which gives lower outside wall temperatures. FPostrun measurements show
that the thickness of the deposit ranged from O to 0.05 inch (0.127 cm). If
the deposit is assumed to have the same thermal conductivity as the PG wall and
is assumed to have an average thickness of 0,04 inch (0.102 cm), the outer wall
temperature can be analytically determined to be 2920°F (1872°K), which com-
pared favorably with the experimental results. The corresponding inner wall
temperature is 4750°F (2894°K). These analytical results would be expected to
be somewhat above measured temperatures because radiation from the inside wall
was neglected and also axial conduction to the radiating exit was neglected.

B. POCO Graphite Chambers

A thermal analysis was performed to correlate the temperature data taken
at the inside surface of the exit (the maximum visible temperature in the cham-
ber). A menual calculation considering radiation from this surface and the
end of the nozzle as well as from the outside cylindrical surface resulted in
a surface temperature of 2800°F (1811°K) compared with test data of 2760°F
(1789°K) and 2700°F (1755°K) for Phase II Runs 11 and 18 (Table VII), re-
spectively. The model used in this thermal analysis is shown in the following
sketch:

sq in. (17.74 cmz)

~>m
W
ow -
oo

1.0 2
4.62 sq in. (14.90 cm’)

625 sec F/Btu 0.8

(0.329 sec F/joule}

B 0°F (255'K)

625 sec'F/gtu
(0.329 sec k/joule)

0.45 2
4.62 sq in. {6.29 cm®)
0

ooy &

oo

- 2 .
h = 0,0003 Btu/in.2sec £,(0.8838 joule/cm sec K}
A= 1.95 sq in. (6.29 cm’)

® 5340°F (3222°K)
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The flame temperature was determined assuming the film to be at the same
temperature as the core temperature and assuming nC% = 0.88 as measured for
Run 11.

The analytical result is in very good agreement with test results, es-
pecially in consideration of the run-to-run variation in the test data. As an
example of the variation, a higher exit temperature was recorded for Run 11
than for Run 18 even though the firing duration of Run 11 was shorter, the cham-
ber pressure was somewhat lower, and the measured ﬂc* was lower.

Though the highest visible temperature was 2700° to 2800°F (1755° to 1811°K),
the inside wall further upstream would be expected to run about L00° (L478°K)
hotter. The exit surface is cooler because the heat transfer coefficient is
lower, it is radiating to ambient air, and it is in close proximity to the
large radiating surface at the end of the nozzle.

C. PG/Carbitex Chambers

No useful temperature data were obtained for TG/Carbitex chambers from
the FLOX/Methane test program. However, an analysis was made to determine the
inside and outside throat wall temperatures for various flame temperatures.
Axial conduction was ignored, a simplification which is more valid for free
standing chambers than for the composite chambers. The axial thermal resist-
ance at operating temperatures for the free standing chambers is about 2 1/2
times that of the FG/Carbitex chambers.

Figure 54 shows the inside and outside throat wall temperatures for the
PG/Carbitex chamber as a function of flame temperature. At close to stoi-
chiometric mixture ratio, the inside wall temperature will exceed 5000°F

(3033°K).

D. Copper Chamber

A thermal analysis was carried out to attempt to match thermocouple data
obtained in Phase IT Runs 20 and 21 using a copper thrust chamber. A thermal
network as shown in Figure 55 was established for the chamber, considering in
detail the convection, conduction, and radiation processes occurring during
the firing. The thermal analysis was made using a combination of existing
Marquardt IBM 360 computer programs. The two principle computer programs used
were the following:

1. Thermal Analyzer (Electric Analog) Program PL0O0O

2. Film Cooling Program (Iterative Film Heat Balance)
Other auxiliary programs used in this type of thermal analysis are the Radi-
ation Configuration Program (PL031) and the Rocket Performance Program (PLOOL),

The interaction of these programs in the prediction of transient and steady
state temperatures is illustrated by the flow chart of Figure 56.
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FIGURE 56. Flow Chart for Heat Transfer Analytical Techniques
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The results of this analysis are shown in Figure 49. The test data showed
heating rates slower than those predicted analytically. Most of the discrepancy
occurred in the first 10 seconds of firing. This observation leads to the
suspicion that thermocouple lag accounts for the difference. Such a lag is
certainly possible. The thermocouples were glued in holes in the chamber and
were not in direct contact with the metal. After about 10 seconds, the theo-
retical and test curves matched well in slope (rate of temperature rise) ex-
cept near the injector. ZErrors are not surprising near the injector because
the thermal conditions are least well known in that area. The stability and
spreading characteristics of the 1iguid film are not well known, and the mag-
nitude of heat conduction into the cold injector is not well known.. Both of
these conditions can significantly affect the temperature at TCH (2 inches
(5.08 cm) from the base). 1

In order to isolate the effects of the injector, a sophisticated analysis
of the throat region was performed. The throat was isolated by using the test
temperatures at Tego (3.74 inches (9.50 em) from the base) as boundary conditions.
The thermal capacity, thermal conductivity, emissivity, and heat tranfer coef-
ficients were all assumed to be functions of wall temperature. Laminar flow
was assumed to exist near the throat. The results of this analysis are shown
in Figure 52. After about 30 seconds of firing, the heat flux rates were
almost identical. Again, the difference between the two curves is indicative
of thermocouple lag.

Tt is expected that local melting would begin under the conditions of
Runs 20 and 21 about 100 seconds after ignition. Certainly, the chamber
could not be operated under steady state conditions under those conditions.

SECTION VII
DESIGN RE-EVALUATION AND CONCLUSIONS

The results of test firings with FLOX/Methane during this program have
provided several clear design criteria and potential problem areas which pro-
vide guidelines and a basis for the continuing development of space storable
engine technology.

An assessment of the results of this program provides the following de-
sign criteria and conclusions:

1. The injector performance of the like-doublet design with fuel
film protection was satisfactory and the C¥ efficiency ranged
between 89 and 98% as a function of chamber L¥ and O/F. Good
correlation was obtained between the cold flow mixing criteria
and test C¥ performance.

2, TUnder the test firing conditions run with FLOX/Methane, injector
face overheating or erosion were not encountered.
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3. The achievement of adequate fuel film protection of the chamber
near the injector face is more sensitive to the film injection
pattern and core interaction than to the amount of film flow.
There were no indications from qualitative observations of com-
bustion instabilities during any of the test runs. Ignition
overpressures can be experienced at sea level ambient pressure
when propellant is allowed to accumulate in the chamber.

b, Both chamber erosion and carbon deposition vary over a wide
range locally in the chamber from the injector face to the
throat as a function of fuel film flow, O/F, and L¥,

5. Carbon deposition and erosion rates are also very sensitive to
wall temperatures as indicated by the different results of
firings with copper, POCO graphite, and PG chambers.

6. During the Phase II 322 second test firing of the EG/Carbitex
chamber, the final mode of failure was gradual erosion through
the PG inner wall in the throat region. After erosion through
the PG at a rate of about 0.12 mil/sec (0.000505 cm/sec)
erosion through the Carbitex wall proceeded several times faster
until burn through.

7. The structural bond between the PG inner wall and the Carbitex
shell remained intact under all conditions of test firing and
resultant pressure and thermal cycling. Axial hairline cracks
in the F¢ inner wall did not cause failure nor increase the
rate of chamber degradation.

8. The relationships observed between throat wall temperatures for
different chamber materials, and the erosion rates and combustion
efficiencies in the range of I¥* values from 12 to 18 inches
(30.48 to 45.72 cm), indicate that both film cooling and con-
duction cooling (inter-regenerative) were effective in control-
ling wall temperatures. An optimized graphite chamber design of
promise may utilize film cooling along with axial conduction,
radiation, and heat sink effects to minimize both erosion and
carbon deposits.
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TABLE T
INJECTOR DESIGN PARAMETERS
100-POUND THRUST FLOX/METHANE ENGINE
Dwg. X22L401
pFLOX = 90.0 1b/cu ft pCHq = 27.6 lb/cu ft
= 1.442 gr/cnd = 0.442 gr/cmd
Inj(/ector o/F (.)o (.)f D[:'ilm C:F ‘;"o (c) 1(c) \:"f Vel V¢ Vo % (Fut?l)
S/N in. in. in. F F L RN U - fps |B.L.Film
(cm) (cm) (cm) (K) (K) (m/sec) | (m/sec)
001 5.0 0.026 0.0110 0.005 =10 =11 0.645{0.678|0.65 190 59 10
(0.066) (0.0279) (0.013) | (249.8) | (249.3) (57.9) |(18.0)
(6 Doublet)| (6 Doublet)| (6 Jets)
002 5.0 0.026 0.0125 0.005 ~10 ~11 0.64 [0.68 {0.50 147 59 7
(0.066) | (0.0318) | (0.013) | (249.8) [(249.3) (44.8) 1(18.0)
(6 boublet)] (6 Doublet)| (6 Jets)
FOR S/N 001 MODIFICATION TO ADD FILM RING NO, 2 (6 JETS)
00t 5.0 0.026 0.0110 0.005 =10 =11 0.645(0.678{0.59 174 59 20
(0.066) (0.0279) (0.013) | (249.8) [(249.3) (53.0) |(18.0)
(Mod) 4 (6 Doublet)| (6 Doublet)| (12 Jets)
FOR S/N 001 MODIFICATION TO ADD FILM RINGS No. 2 AND 3 (12 JETS)
001 5.0 0.026 0.0110 0.005 ~10 =11 0.645)0.678|0.54 160 59 30
, (0.066) (0.0279) (0.013) | (249.8) {(249.3) (48.8) [(18.0)
(Mod) , (6 Doublet)] (6 Doublet)| (18 Jets)
FOR S/N 002 MODIFICATION TO ADD FILM RING NO. 2 (6 JETS)
002 5.0 0.026 0.0125 0.005 -10 =11 0.64 [0.68 [0.465 137 59 14
(0.066) (0.0318) (0.013) | (249.8) [(249.3) (41.8) |(18.0)
(Mod), (6 Doublet)| (6 Doublet)| (12 Jets)
FOR S/N 002 MODIFICATION TO ADD FILM RINGS NO, 2 AND 3 (12 JETS)
002 5.0 0.026 0.0125 0.00% ~-10 -1 0.64 [0.68 {0.43 128 59 21
(0.066) (0.0318) (0.013) | (249.8) {(249.3) (39.0) {(18.0)
(Mod) » (6 boublet)] (6 Doublet)| (18 Jets)
NOMENCLATURE : s
o/F Oxidizer (Flox) flow e Ve
Fuel (LPG) flow R Fuel~to-oxidizer momentum ratio
D Diameter of oxidizer orifices o 0
D Diameter of fuel orifices Ve Fuel injection velocity
Dfiim Diameter of fuel film orifices vy Oxidizer injection velocity
ap Resultant momentum angle of fuel stream ¢ (Fuel) Film fuel flow
tube relative to chamber centefline S.L.Film Total fuel flow
a, Resultant momentum angle of oxidizer

stream tube relative to chamber centerline
(Cp)¢ Fuel orifice discharge coefficient

(Cp), Oxidizer orifice discharge coefficient
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TABLE

IT

SUMMARY OF THE PHASE I INJECTOR EVALUATION FIRING TESTS

Configuration

P F
c N
Run . Injector . e K
No. | Date Chamber L det;er S/N Duration |Categoryk| t, . o/F e Remarks
(1968) in.{ cm se sec sec psia N/cm? | 1bF N
1| 2 Aug.| Copper |18 | 45.72 No 001 L 1 ~k 8.02 {107 [73.8 [ -~ - 97 Facility shakedown and combustion
2| 2 Aug.| Copper |18 | 45.72 No 001 L 1 ~k 7.62 | 100 |68.9 | -- -- 99 performance. Instrumentation and
3| 6 Aug.| Copper |18 | L5.72 No 001 10 ! ~4 6.26 | 102 170.3 | 59 262.4 1 98 propellant conditioning discrepancies
4| 6 Aug.| Copper (18 | L5.72 No 001 10 i ~4 6.13 | 102 170.3 |58 258.0 1 99 resolved.
5 6 Aug.!| Copper [18 | 45.72 No 001 10 1 ~4 4L.36| 88 60.7 | u8 213.5 | 100
6| 6 Aug.| Copper {18 | L5.72 No 001 10 1 ~4 L.15 | 84 157.9 | b6 20k.6| 98
71 8 Aug.| topper {12 | 30.48 No 001 5 1 ~b 5.50 ] 88 ]60.7 )49 218.0 | 90
81 8 Aug.| Copper |12 30.48 No 001 5 1 ~4 5.17 ] 92 63.4 | 50 222.4 | 94
9| 8 Aug.| Copper |12 30.48 No 001 5 1 ~b 6.57 {102 70.3 56 249.1 93
10 | 8 Aug.| Copper [12 | 30.48 No 001 5 1 ~4 6.06 | 101 [69.6 | 56 249,11 93
11113 Aug.| PG 001 |18 | 45.72 No 001 tgn. 3 - - - - - -— ~- Chamber shattered, hard start
12| 15 Aug.| POCO 18 | 45.72 No 001 Ign. 3 -- - — - - - ~=
13 ] 19 Aug.| Copper |18 L5.72] VYes 001 0.5 2 High response P, instrumentation
14| 20 Aug.| Copper {18 | 45.72] VYes 001 0.5 2 installed to monitor effect of
15| 20 Aug.| Copper |18 45.72 Yes 001 Q.5 2 fgnition data only ignition sequence and thermodynamic
16 { 20 Aug.| Copper |18 | L45.72] VYes 001 0.5 2 state.
17 | 20 Aug.| Copper [18 | 45.72] VYes 001 0.5 2
18| 20 Aug.| Copper |18 | L45.72 No 001 10.0 1, 2 5.3 5.3 80.4|55.4 |40 177.9| 84 Steady state run to evaluate effect
of propellant thermodynamic state.
19 | 21 Aug.| Copper {18 | 45.72{ Yes 0ot 0.5 2 Ignition sequence and propellant
20 | 22 Aug.| Copper {18 | h5.72] Yes 001 0.5 2 thermodynamic state revised to achieve
21| 22 Aug.| Copper |18 | 45.72] Yes 001 0.5 2 Mgnition data only steady state transition.
22 | 22 Aug.| Copper |18 | 45.72| Yes 001 0.5 2
23 | 22 Aug.| Copper [18 | L45.72f VYes 001 0.5 2
24| 22 Aug.| Copper |18 | 45.72 No 001 6.0 1, 2 5.8 6.1 95 [65.5 |5k 240.2 ¢ 95 Steady state run to evaluate effect
of propellant thermodynamic state.
25| 22 Aug.| PG 002 |18 | 45.72 No 001 20.0 3 6.1 3.1 77.4i53.4 |39 173.5| 80 Oxidizer valve inadvertently closed
during run.
261 26 Aug.| PG 005 |18 | 45.72 No 001 1gn. 3 -— -~ - - — -- - Chamber shattered at ignition, hard
start, ignition marginal.
27 | 29 Aug.! PG 007 {18 | 45.72 No 1] ~3 3 Data not stabilized Run cut prematurely, smooth start.
28 | 29 Aug.| PG 007 |18 | 45.72 No 001 1gn. 3 -- - -- - - - -— Chamber failed at ignition, hard
start, marginal ignition.
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TABLE II (Continued)

<8

Configuration
Pc FN
Run . fnjector .
No. DATE Chamber Lx KG::;er S/N Duration | Category¥ Cyara 0/F Nese Remarks
(1968) in.| em sec sec psia N/cm? | 1bf N
29| 29 Aug. | Copper | 18 | 45.72) No 002 5 1 5 5.6 87 160 |-- == | 100 | GCHy system installed. Revised
ignition sequence
30| 29 Aug. | Copper | 18 | 45.72 No 002 0.5 2 Hard start
31| 29 Aug. | Copper | 18 | 45.72 No 002 0.5 2 Hard start
32} 30 Aug. | Copper | 18 | 45.72] Yes 002 0.76 2 Hard start
33| 30 Aug. | Copper | 18 | 45.72] VYes 002 1.76 2 P Soft start
34| 30 Aug. | Copper | 18 | 45.72] Yes 002 1.65 2 lgnition data only Soft start
351 30 Aug. | Copper | 18 | 45.72} Yes 002 2.3 2 Soft start
36| 30 Aug. | Copper | 18 | 45.72] Yes 002 5.2 1 Hard start
37| 30 Aug. | Copper | 18 | 45.72 No 002 8.0 H Hard start, ign. overpressure marginal
381 4 Sept.| Copper | 18 | 45.72] Yes 002 0.5 2 GFg system installed. Revised ig-
39| L Sept.| Copper | 18 | 45.72] Yes 002 0.5 2 Ignition data only nition sequence. Soft starts.
40| 4 Sept. Copper | 18 | 45.72] Yes 002 0.5 2
41} &4 Sept.| Copper | 18 | 45.72 No 002 4.0 2 - - - - - - - GFp off prematurely.
42| 4 sept.| Copper | 18 | 45.72 No 002 9.7 1, 2 9 6.5 87 60 L 200,21 99 Steady state. Evaluate effect of
43| L4 Sept.| Copper | 18 |L45.72 No 002 g.2 1, 2 8.7 6.1 83.4157.5 143 191.3| ok propellant thermodynamic state. Good
transition from ignition transient to
steady state.
L4l 5 Sept. PG 003 | 18 |45.72 No 002 Ign. 3 - - - -— - - - Soft initial start. Hard restart.
Fuel system start dynamics
451 5 Sept. PG 006 | 18 {45.72 o 002 23 3 2.5 13.8 92.4163.7 153 238.8 | 100 | Revised fuel start sequence--soft start
12.4 | 5.1 87.4160.3 |43.5] 193.5} 99 Thermal performance and erosion --
Final data
19.0 6.2 80.L | 55.4 139.51 175.7 | 97.5 lPin hole in side of chamber
451 9 Sept. POCO  {10.65(27.05 No 002 20 3 3.3 | 4.0 74.4[51.3 |-~ - 84 Thick wall graphite heat sink
13.4 (3.7 76.4]52.7 { -~ - 38 (POCO) , minimum L¥*
20.6 [ 3.6 75.4{52.0 |-~ - 84
471 9 Sept. PG 00L | 18 [45.72 No 002 19 3 4.5 13.5 S4.4] 65.1 |52 231.3 97
8.6 |3.45 102.4{ 70.6 |53 235.8 | 100 Thin wall PG chamber, maximum L%
16.0 |5.22 |96.4|66.5 |40 |218.0 100 | |
* Category: OX{DIZER:
1. Combustion performance FLOX -~ 82.5% LF»/17.54 LO2 Mixture (by weight)
2. lgnition compatability .
3. Thermal and erosion characteristics FUEL:
o tdata = Time {sec) from both propellants on to performance point Liquified natural gas (weight )
B . . Methane 87.5
PG = Pyrolytic graphite Ethane 11.6
Propane 0.5
Nitrogen 0.4
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TABLE TIIT

GASEQUS METHANE PEAK IGNITION PRESSURES

Prerun Conditions for Runs 30 through 33

T, = -330°F (72°K)
i
T, = -270°F (105°K)
o]
inj,,. = -250°F (116°K)
Te = -280 to -330°F (100 to T72°K)
i
T = -260°F (111°K)
e
inj, = -130°F (183°K)
Ttankf = -230°F (128°K)
T Tinj Fristler Ristler
ggn i t Peak Meter 0'graph Remarks
°F | (k)| °F | (°K) | pei | (W/em®) | psi |(W/cmP)
30 | -278 | (101) | -133 | (181)| -~ - 80 [( 55.2) | Simultaneous on
31 | -266| (108) | -138 | (179)| -- -- 1100 |(758.4) | Simultaneous on
32 | -272 | (104) | =120 | (189)| 700 | (482.6) | 675 |[(465.4) | Simultaneous on
3% | -254 | (114) | =128 | (184)| 450 (310.3) | == - 1 sec ox lead
NOTES :

Injector S/N 002

Runs 30 and 31: pressure regulator installed. Low volume capacity
gave very large O/F values at ignition.

Runs %2 and 33: larger volume pressure regulator installed.

Simultaneous on gave fuel lead due to slower responding oxidizer valve.

8l
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SUMMARY CF THE PHASE I CHAMBER

TABLE IV

EROSION TESTS

Chamber at injector Face Mid-Chamber Throat
initial Final Wall Thickness Initial Final initial Final
Run| Run o Wall Between Film In Line with ™ Watl Wall o 00 Wall 0 vall internal Erosion
No.| Time Thickness orifices Film Orifices Thickness Thickness Thickness Thickness Rate
in. in. in. in. in, in. in. ia.

sec {cm) {cm) in. {cm) in. {cm) {cm) {cm) in. (em) {cm) (em) (em) {cm) in. {cm) in./sec| {em/sec)
25} 21.3 1.396 0.066 0,029 {(0.074 | 0.050 |(0.127 1.396 0.066 0.042 (0.107 0.814 0.931 G.057 0.928 0.043 {0.109 0.00060 | (0,00152

{3.5u6) {0.168) to to to to (3.546) (0.168) to to {2.068) | (2.365) {0.145) {2.357) to to to to
0.041 0.104) } 0,053 | 0.135) deposit | deposit) 0.052 0.132) 06.00016 | ©.00041)
Lsi 19 1.396 0.066 0.000 | (0.000 | 0.034 {(0.086 1.396 0.666 0.043 {0.109 0.826 0.929 0.053 0.926 0.044 (0.112 0.00040 | (0.00102

(3.546) | (0.168) to to to to (3.546) | (0.168) to to (2.098) | (2.360) | (0.135) (2.352) to to to to

0.026 | 0.026) | 0.048 | 0.122) deposit | deposit) deposit| deposit) o a)
u71 16 1.407 0.062 0.047 {(0.119 | 0.056 [(0.142 1.407 0.062 0.043 {0.104 0.827 0.831 0.052 ¢.925 0.038 (0.097 0.00188 | (0.00188

(3.579) | (0.157) to to to to (3.57%) | (0.157) to to (2.101) | (2.365)] (0.132) to to to to to

0.050 | 0.127) | 0.050 | 0.127) deposit | deposit) ?epos it jdeposit| deposit) o )

2.350
to
deposit)

tnitial D Final D Throat internal Erosion Rate

in. (cm) in. {em) in./sec (em/sec)

Le| 19.6 |POCO Chamber 0.830 | (2.108) 0.832 (2.113 ©.00005 {0.000127

to to to to
0.850 2.159) 0.0005 0.00127)
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CELL M-2, MARQUARDT MAGIC MOUNTAIN ROCKET TEST LABORATORY

TABLE V

SUMMARY OF THE PHASE IT THRUST CHAMBER FIRING TESTS

28 December 1968 to 2 February 1969, Test No. 6060

Configuration

R o/F Run
U pate Duration . P C* i Objectives Remarks
No Chamber Injector Ratio N N
J (sec) psia fes | (@) | (Note 1)
(N/em?) | (m/sec)
1. (28 Dec. | Cu X25401, S/N 001 7.52 5.07 98.3 6340 92 (2), (W) | GFy/LCHy
1968 L* = 18 in. 18 weep holes (67.8) | (1932) Ignition
(45.72 cm) {12 Hi Angle
6 Lo Angle)
2. | 28 pDec. | Cu X24401, S/N 001 | 12.18 4.98 | 100.4 6460 93 (2), () | GFy/LCHY
Lx = 18 in. 18 weep holes (69.2) | (1969) Ignition
(45.72 cm) {12 Hi Angle
6 Lo Angle)
3. 128 Dec. | Cu X24401, S/N 001 10.5 3.55 88.4 6620 98 (2, () FLOX flow decay due to
% = 18 in. 18 weep holes {60.9) | (2018) tank near empty
(45.72 cm) (12 Hi Angle
6 Lo Angle)
4. |28 Dec. | Cu X24401, S/N 001 | 10.13 2.48 66.54 6450 99 (2), (4) | FLOX flow decay due to
tx = 18 in. 18 weep holes (45.8) | (1966) tank near empty
(45.72 cm) (12 Hi Angle
6 Lo Angle)
5. 131 Dec. | PG, SL-6 X24401, S/N 001 - - — - - (3) Chamber shattered
18 weep holes at ignition
{12 Hi Angle
6 Lo Angle)
6. {6 Jan. | Cu X24401, S/N 001 0.5 - - - - (1) Ambient purge prior
1969 Lx = 18 in. 18 weep holes to ignition
(45.72 cm) (12 Hi Angle GF5/LCH),
Kistler P_ 6 Lo Angle) Max. P, spike =
75 psia (51.7 N/cm?)
7.1 6 Jdan. | Cu X24401, S/N 001 0.5 - - - - (1) Ambient purge prior
L =18 in. 18 weep holes to ignition
(45.72 cm) (12 Hi Angle GF2/LCHy,
Kistler P, 6 Lo Angle) Max. P spike =

75 psia (51.7 N/cm?)

NOILYHOAY,
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TABLE V (Continued)

Configuration

Run o/F Run
No Date Duration Ratio P. Cx LS Objectives Remarks
Chamber Injector (sec) psia fps (%) (Note 1)
(N/em?) {m/sec)
8.} 6 Jan.| Cu X24401, S/N 001 0.5 -- - -~ -- (n Max. P. spike =
L = 18 in. 18 weep holes 100 psia (68.9 N/cm?)
(45.72 cm) (12 Hi Angle
Kistler P_ 6 Lo Angle)
9.! 6 Jan. | tu X2u401, S/N 001) 7.0z | k.12 | 99.4 6100 | 90 (1), (2) | pata not stabilized
L% = 18 in. 18 weep holes (68.5) | (1859)
(45.72 cm) (12 Hi Angle
without Kistler 6 Lo Angie)
10. 7 Jan. | POCO No. 2 X2L401, S/N 001 31.52 L.5 99.9 6260 g1 (2), (3) Erosion nil
L = 14 in. 18 weep holes (68.9) | (1908)
(35.56 cm) (12 Hi Angle
6 Lo Angle)
11.| 7 Jan. | POCO No. 2 X24401, S/N 001 | 65.0 L.27 | 97.4 6000 | 88 (2), (3) | Erosion nil
Lx = 14 in. 18 weep holes (67.2) | (1829)
(35.56 cm) (12 Hi Angle
6 Lo Angle
12. ! 8 Jan.| PG, SL-7 X2L401, S/N 001 - - — -— - (1), (3) | Chamber shattered
L*x = 14 in. 18 weep holes at ignition
(35.56 cm) {12 Hi Angle
6 Lo Angle)
13. 8 Jan. | PG, SL-11 X2L401, S/N 001 22.9 4.18 97.4 6550 95 {3) GFz/GCHq_
L¥ = 14 in. 18 weep holes (67.2) | (1996) Ignition procedure
{35.56 cm) (12 Hi Angle Upstream chamber
6 Lo Angle)
i4. | 13 Jan. | PG, SL-} X24401, S/N 001 | 20.9 k.56 9.9 6400 93 (3) Upstream erosion nil
Lx = 14 in. 12 weep holes (66.1) | (1951) Erosion at mid-chamber
(35.56 cm) (Hi Angle) in line with oxidizer
Long splash doublets
ring
15. | &4 Jan. |} PG, SL-O Same, with 15.5 3.9 93.4 6080 a0 (3) Upstream erosion nil
L% = 14 in. short splash (64.4) | (1853) Erosion at mid~-chamber
(35.56 cm) ring in line with oxidizer

doublets
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TABLE V (Continued)

Configuration

Run o/F Run
No Date Duration Ratio Pe c* M. | Objectives Remarks
Chamber injector (sec) psia fps (%) (Note 1)
(N/cm?) | (m/sec)
23. L Feb. | POCO No. 2 X24401, S/N 002 10.7 - - - -— (2) P. tap failure
Biprop valve
blank plate
24, 6 Feb. | Cu Ch X2L401, S/N 001 10.2 L.27 101.9 6400 93 (5) Good run
L* = 12 (30.48 cm)| Short splash (70.3) | (1951) tell transient
€ =12 18 weep ~ 20 sec
25,1 7 Feb. | PG/Carbitex X24401, S/ 001 | 59.8 | 4.22 | 107.4 6470 | 9b.L (5) Good run
SL-3 Short splash (74.0) | {1972) Min, P_oyy = 3.52
€= 12 18 weep psia (%.l N/cm?) -
Chamber bell failure
at ~ 12 sec
26.| 10 Feb. | Same without X24401, S/N 001 47.5 4,18 97 .4 6350 92.6 (3) Good run
nozzle Short splash {67.2) {1935) Throat erosion rate
expansion 18 weep 0.221 mil/sec
(0.00561 cm/sec)
27.} 10 Feb. | Same without .X2LLot, S/N 001 59.5 .23 96.4 6500 9k.g (3) Good run
nozzle Short splash {66.5) | (1981)
expans ion 18 weep
28.1 11 Feb. | Same without X24401, S/N 001 71.3 h.67 98.4 6690 96.5 (3) Good run
nozzle Short splash {67.8) (2039) Throat erosion rate
expansion 18 weep 0.129 mil/sec
(0.00328 cw/sec)
29. | 11 Feb. | Same without X24501, S/N 001 | 68.2 | 4.50 | 92.4 6500 | 9.3 3) Good run
nozzle Short splash (63.7) (1981)
expansion 18 weep
30.| 11 Feb. | Same without X24401, S/N 001 15.7 - - - - (3) Chamber failed at

nozzle
expansion

Short splash
18 weep

throat
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TABLE V (Continued)

A
o
3
TOTAL ACCUMULATED RUN TIME: §
el
1. Test Phase | 213.4 sec g
2. Test Phase 11 862.7 sec

3. Total Time on One Injector (Phase I1) (X24401,Mod. S/N 001) 852.0 sec
L, Total Time on One Chamber (Phase 11} (PG/Carbitex SL-3) 322.0 sec
Notes:

1. Run objectives: (1) = Ignition, (2) = Performance, (3) = Streaking and life, (4) = Facility check, (5) Altitude test,
{6) Film conduction cooling investigation

VINGOJITYD "SANN NYA )I,ngnb,lp

2. Caused by misaligned film jet, which occurred when low angle weeper jets were reopened from 12 weeper configuration.
3. All data points taken at stabilized conditions 6 to 16 seconds from engine ignition

L., oOxidizer: FLOX - 82.5¢ LF,/17.54 LO, (by weight)
Fuel: Methane (LCHy)

Lh19 3aodey




Report 6147

arcluardf

;ORPORATION

TABLE VI

SUMMARY OF AVERAGE THRUST CHAMBER THROAT EROSION DATA,
PHASE II TESTS -- DECEMBER 1968 TO FEBRUARY 1969

Throat Throat
Run Diameter | Diameter Erosion
Ch%f;’:r %’fﬁ:f Nuiggr Duration | Before | After Rate
Run Run
sec in, in. mil/sec
{cm) {em) (em/sec)
Copper, L¥ = 12 in. - 20 63.7 0.8232 0.8428 0.15h4
= 30.48 cn (2.0909) | (2.1407) }(0.000391)
Copper, L* = 12 in, .- 21 67.5 0.8428 0.8845 0.309
= 30,48 em (2.1407) | (2.2466) [(0.000785)
POCO Graphite POCO 2 10, 11, 18 180(1) 0.8188 0.8150 0
(2.0798) | (2.0701) (0)
G Stresk ST 11 13 22.9 0.8258 0.8278 0. 0Lk
(2.0975) | (2.1026) |(0.000712)
PG Streak 8L 1 1k 20. 0.8345 0.8440 0.238
A (2.1196) | (2.1428) 1(0.000605)
G Streak 8L 9 15 15. 0.8277 0.8365 0.25
(2.1024) | (2.2247) [(0.000635)
Multilamina MRS 58 17 60. 0.7907 0.8135 0.19
(2.0084) | (2.0663) |(0.000482)
Ri/Carbitex Carbitex SL-1 22 4O, 0.8553 0.8572 0.024
(2.1724) | (2.1773) [(0.000061)
Pa/Carbitex/ Carbitex SL-3 25 59.8 0.80k2 | 0.8333 | 0.243
REG Altitude (2.0427) | (2.1166) {(0.000617)
PG/Carbitex/ Carbitex SL-3 26, 27 107.(2> 0.8333 0.8609 0.129
RPG Altitude (2.1166) | (2.1867) ](0.000328)
R/Carbitex/ Carbitex SL-3 | 28, 29, 30| 155.2(3) | 0.8609 | 0.906(%)| 0.145(%)
RFG Altitude (2.1867) | (2.3012) {(0.000%68)

NOTES :

(1) Run 10 (30 sec), Run 11 (60 sec), Run 18 (90 sec)
(2) Run 26 (47.5 sec), Run 27 (59.5 sec)
(3) Run 28 (71.3 sec), Run 29 (68.2 sec), Run 30 (15.7 sec)
(4) Hole burned in vicinity of throat
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TABLE VIT

EXTENDED RANGE FIIM TEMPERATURE DATA, PHASE IT TESTS

Run Max. Temp. Run
o Duration Chamber Remarks
| °F (°K) sec
11 | 2760 | (1789) 65 POCO No. 2 Measurement taken at
internal surface of exit
13 | 2730 | (1772) 22.9 R SL-11 External surface at throat
14 [ 2880 (1855) 20.9 ¢ SL-1 External surface at throat
17 | 3150 | (2005) 60 Iyrogarb?de External surface at throat
Multilaminar (See Tote 1)
MRS -58
18 | 2700 | (1755) 81.1 POCO No. 2 Same as Run 11
NOTES :
1. Temperature measurement questionable due to fogging
of camera window.
2. Tests of the 100-pound FLOX/Methane engine.

92




____arquardi VAN NUYS, CALIFORNIA Report 61)47

CORPORATION

APPENDIX A
INJECTOR DESIGN CRITERIA FOR

HYPERGOLIC BIPROPELLANT ROCKET THRUSTORS

By R.J. FioRito
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APPENDIX A

INJECTOR DESIGN CRITERIA FOR
HYPERGOLIC BIPROPELLANT ROCKET THRUSTORS

By R.J. FioRito

SECTION A-I
INTRODUCTION

The information contained in this Appendix A is presented for the purpose
of delineating the more important considerations in the design of the injector
system for space restartable bipropellant rocket engines. A large body of
substantiating data now exists for earth storable (noncryogenic) hypergolic
propellants and work is increasing in evaluating similar design criteria for
the higher performing, space storable (fluorinated) propellants.

SECTION A-II
SUMMARY

This presentation includes brief discussions and substantiating data
charts from Marguardt and industry investigations of the following important
design considerations: Space ignition, Propellant mixing, Hypergolic stream
separation, Atomization and distribution, Film cooling, and Combustion sta-
bility.

The important factors affecting both the pulsing and steady state char-
acteristics of injectors for hypergolic space thrustors are summarized in
Table A-T. '

SECTION A-III
INJECTOR/COMBUSTOR MODEL

A model of an idealized injector and its resultant combustion zone is
shown in Figure A-1. Primary combustion is initiated by the injection ele-
ments which provide the required mixing, atomization, and mixture ratio pro-
file (O/F ratio distribution). A fuel-rich mixture ratio is provided at the
injector periphery by injection and by film formation on the internal walls
of the chamber. Depending on the propellant system and chamber material sys-
tem, the primary combustion core is O/F ratio-profiled to react the film
propellant to achieve maximum C* performance.
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SECTION A-1IV
DESIGN CONSIDERATIONS

A, Space Ignition

Ignition transient studies by Marguardt and other investigators of storable
hypergolic propellants have indicated the possibility that the observed large
ignition overpressures might be related to the high energy accumulations of
propellant residues on the internal surfaces of the chamber. Similar possi-
bilities exist with the fluorinated space storable propellants and ignition
studies are continuing in this area. Propellant deposits are materially in-
fluenced by the following considerations:

1. Ignition delay

2.  Propellant thermodynamic properties -- Evaporation rates and
condensed phase constituents

3. Injection characteristics

a. Uniform liquid phase mixing

b. Propellant synchronization

c. Dribble volume (Injector emptying and filling time)
4,  Temperature of chamber walls

5e Engine duty cycle -- It is desirable to operate in a temperature-
duty cycle regime which prevents accumulation of residual propel-
lants between ignition cycles.

Marquardt has developed a pulse operation model computer program to study
the effect of ignition delay, initial combustor wall temperature, and pulsing
duty cycle on the amount of propellant which can be collected on the walls of
the combustor. This computer program accounts for the thermodynamic heat
balance influencing combustor wall temperature and the mass rates of propel-
lant accumulated during any pulse train. Extensive ignition testing using
specialized dynamic measurement technigues (pressure, accelerometers, tem-
perature, and ultra-high speed photography of the ignition process ) have
demonstrated the usefulness of the analytical pulse operation model in pre-
dicting ignition overpressures. More detailed information regarding this
program is presented in Reference A-T.

B. Propellant Mixing Criteria

A mixing excellence parameter (Em) for bipropellant rocket engines has
been developed by Jack Rupe of JPL. This parameter permits quantitative
characterization of an injector from nonreactive fluid spray testing. A
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correlation of the cold flow mixing parameter with engine firing specific im-
pulse performance is shown in Figures A-2 and A-3. The data of Pigure A-2
were developed using two types of injection elements in multi-element injectors
for ClF5/N2H4 propellants. Figure A-3 shows the effect of mixing excellence
upon C¥ efficiency for a 100-pound thrust, multi-like doublet injector with
FLOX/Methane propellants.

Rupe also developed a cold flow mixing factor for unlike impinging jet
type injection elements which serves as an aid in the design and sizing of in-
jection elements. The relationship of the Rupe parameter to the mixing ex-
cellence factor is shown in Figure A-4., It is seen that optimal mixing for a
given injector element (in this case a doublet) is obtained at a Rupe param-
eter value of 0.5. Similar relationships hold for other injection elements
such as triplets, quadruplets, etc.

C. Hypergolic Stream Separation

Evidence has been found by various investigators which leads to the be-
lief that when two streams of highly reactive propellants impinge the sudden
release of gaseous products at the impingement interface can drive the streams
apart and prevent adequate mixing.

Analytical models have been formulated for the quantitizing of this ef-
fect for the earth storable propellants and additional work is being conducted
in evaluating this effect for the fluorinated space storable combinations.

The salient results of the analytical studies are shown in Figure A-5.
This graph presents a map of regions where stream separation can occur in
terms of propellant reactivity (reaction rates) and stream contact time which
is a function of injection geometry. The analysis of Figure A-5 applies to
the NgOu/NgHu propellant combination and tends to show that the region of no
stream separation occurs for higher injection velocity and smaller jet diam-
eters. Also, stream separation is more likely to occur at conditions foster-
ing higher reaction rates such as increased chamber pressure and propellant
injection temperature. Additional details on this subject are presented in
Reference A-2.

D. Atomization and Distribution Criteria

The effect of propellant atomization on combustion performance is shown
in Figure A-6. Firing specific impulse performance is related to a mean pro-
pellant droplet size 530 as defined by the empirical equation develcped by
Ingebo for impinging streams of fluid. It is seen that the mean droplet
diameter is influenced by injection diameter and velocity. The combustion
performance with the hypergolic propellant combination improves with de-
creasing droplet size. Figure A-7 shows firing data for various injector
types related to the sizing and interaction of injection elements. Tt is
seen that improved thrustor performance is attained with decreasing mass flow
per injection element (or increased number of elements for a given overall
propellant mass flow rate),
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Figure A-8 illustrates a common situation in practical injector design
relating to the influence upon propellant distribution within the combustor by
the manifolding system which delivers propellant to the injection elements.
Figure A-8 shows the distribution variation in an eight unlike-doublet engine
which can lead to sizeable variation from one doublet to another of the im-
portant mixing parameters.

E. Film Cooling Performance

Chamber thermal and chemical protection through boundary layer film con-
trol has been shown to be a practical approach to small hypergolic thrustor
design. The cooling and protective film is produced by direct injection of
one of the propellants having the more desirable thermal and chemical prop-
erties (usually fuel) into the chamber boundary layer. The effectiveness of
this method depends upon:

1. The effective conversion of the jet to a liquid film which
uniformly covers the chamber wall with minimum momentum and
mass losses

2. The retention of the ligquid film mess by the chamber wall to
maximize the heat sink capability

An example of the advancements in £ilm cooling technology is shown in
Figure A-9. This chart shows the effect of improved film cooling techniques
with the NQOA/Aerozine 50 propellant combination upon maximum chamber wall
temperature and specific impulse performance. These data apply to radiation
refractory metal combustors.

This development was aided by a film cooling model computer program which
permits the theoretical evaluation of film cooling effectiveness in terms of
chamber wall temperatures and combustion efficiency. Empirical data sub-
stantiation of the computer analysis has been obtained with the higher energy
fluorinated propellant combinations as shown in Figures A-10 and A-1l.

Additional f£ilm cooling performance information is presented in Refer-
ence A-3,

F. Combustion Stabilibty

High performance rocket combustors designed for extremely high heat re-
lease and gas flow per unit chamber volume are subject to three basic types
of combustion induced instebilities. The three types of combustion insta-
bility are: '

1. Low frequency '"chugging" in which the interaction is between the

feed system and the combustion chamber pressures. The character-
istic frequencies are 100 cps (100 Hz) or less.
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2. Intermediate frequency instabilities occur at or near the injector
face. This type of instability can critically affect injection
mixture ratio and propellant mass distribution, but does not re-
sult in the severe heat transfer rates associated with the third
instability type. The frequency range is in the hundreds of
cycles per second.

3. High frequency acoustic instability in which the interaction is
between the combustion process as influenced by injection param-
eters, propellant chemical kinetics, and the chamber geometry.

The latter type of instability can be the most harmful to the chamber
structure by imposing severly abnormal local heat transfer rates. The high
frequency acoustic instability may consist of longitudinal or transverse modes.
The transverse mode may incorporate tangential, radial, or mixed type oscil-
lations. The frequency range for this type of instability can vary from
500 Hz to 20K Hz depending upon the size of the chamber. For small (1 inch
(2.54 cm) or less) diameter chambers under consideration, the first insta-
bility modes will be in the 100 Hz to 200 Hz frequency range.

The development of analytical methods to describe and predict acoustic
combustion instabilities in liquid bipropellant rockets has been an extremely
difficult problem. The most successful basic approach has been developed by
Priem and Guentert of NASA-Lewis. The Priem instability model considers the
nonlinear conservation equations (with mass addition) for two-phase flow
(1igquid droplets in a combustion gas stream) through an annular combustion
zone of very small lengthA(AZ) and thickness (AR).

A summary map of the tangential instability limits as derived from the
Priem theory is shown in Figure A-12. The pressure amplitude ratio shown is
the pressure disturbance required to initiate sustained instability.

Tt is seen that as the Reynolds number of the droplet (or droplet size)
decreases, the combustion stability improves. Also, minimum stability exists
for constant droplet Reynolds numbers between burning rate parameter values
of approximately 0.1 to 1.0. The burning rate parameter is a function of
chamber diameter, contraction ratio, and fraction of total propellant vapor-
ized per inch of chamber length. The theory also considers that the con-
dition for maximum instability occurs at a region in which the droplet ve-
locity is nearly equal to the combustion gas velocity. This condition
exists generally within one inch (2.54 cm) of the injector face.

More detailed information regarding the combustion instability theory
and correlation with experimental data is given in Reference A-L.

SECTION A-V
REFERENCES

A-1. Juran, W. and R.C. Stechman, Jr., "Ignition Transients in Small
Hypergolic Rockets", AIAA Paper No. 67-515.
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Combustion Institute, ATAA Paper No. 67-38.

A-3, Stechman, R.C., Jr., Joelee Oberstone, and J.C. Howell, "Film
Cooling Design Criteria for Small Rocket Engines', ATAA Paper
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TABLE A-T

DESIGN FACTORS AFFECTING INJECTORS FOR SPACE THRUSTORS

Design Factor

Remarks

Pulse Mode Operation

1.

3.

. Minimal injector dribble volume and propellant

injection synchronization

Good liquid and vapor phase mixing.
number of reaction sites

Large

Opt imum O/F during ignition transient

Steady State Operation

b,

5
6.

.-\']

Mixing

Atomization

Mixture ratio profile (Film cooling)
Injector face cooling

Stream separation

Combustion stability

To optimize start and stop thrust transient
and minimize propellant residues in chamber

For optimal ignition reliability and minimal
ignition delay

Influenced by system pressure dynamics and
propellant valve synchronization

Optimum O/F ratio and mass distribution
Maximum inter-propellant contact area
Chamber wall cooling and chemical protection
Structural

Propellant blow apart at contact which impedes
good mixing and complete combustion

High frequency combustion oscillations can
lead to catastrophic heat transfer rates
and structural failure.
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STRUCTURAL PROPERTIES OF CARBITEX
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APPENDIX B

STRUCTURAL PROPERTIES OF CARBITEX

SECTION B-I
GRADE NUMBERING SYSTEM

Carbitex is the brand designation of a family of carbon or graphite fiber
base materials bonded together with carbon or graphite, exhibiting superior
physical properties. Grade numbers are used to distinguish specific construc-
tions as outlined below:

A. First Three Numbers in Grade Designations

First Number -- Fiberous Base Composition/Bond Composition
1 -- Carbon base/carbon bond
5 -- Graphite base/carbon bond

7 -- Graphite base/graphite bond

Second Number -- Form of Fiberous Base
0 -~ Cloth of standard square weave
1 -- Yarn (all constructions)

2 -- Multiple base materials
Third Number -- Type of Construction
0 -- Tayered flat construction

1 -~ Angled construction

2 == Tape wound
3 -= Pilament wound
Y} -- Multiple base constructions

B. Additional Letters

A through Z7ZZ -- Used for designation of customized grades,
such as compositions containing chemical
additives, having controlled porosity,
density, or other physical properties.
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C.  Example

Grade 100 -- Carbon base/carbon bond - cloth of standard
square weave - layered flat construction.

D. Carbitex Structures

Carbitex layered cloth structures are composed of standard square weave
carbon or graphite cloth stacked in layers and bonded together with carbon or
graphite to form a solid homogenious material. This construction is available

in flat plate, rod, heavy wall tubing, solid and cored billet, and some formed
shapes.

Figure B~1 illustrates typical Carbitex cones. Figures B-2 and B-3 are
graphs of variations in physical properties of this material. The physical
properties of standard layered cloth Cerbitex are tabulated below.

PHYSTCAL FROPERTIES OF STANDARD LAYERED CLOTH CARBITEX
Typical Values at 68° to 212°F

Grade
Property
100 500 700

Structure

Bond Material Carbon | Carbon |[Graphite

Base Material Carbon | Graphite |Graphite
Purity (% elemental carbon content) 99.5 99.7 99.9
Density (em/cc) 1.38 1.40 1.hk
Flexural Strength (psi)

With grain 1k, 000 | 17,600 11,000
Compressive Strength (psi)

With grain 8,000 | 10,200 7,600

Against grain 45,000 | 40,000 | 21,000
Tensile Strength (calculated psi)

With grain 7,000 8,800 5,500
%mg%f@@hm(mixl&)

With grain 16 27 13
Coefficient of Thermal Expansion (in./in./°F) x 1077

With grain 8.9 6.1 5.9

Against grain 8.3 1k.1 18.0
Electrical Resistivity (ohm-inch)

With grain 0.0025] 0,0020 0. 0006

Against grain 0.055 0.003%5 0.0017
Coefficient of Thermal Conductivity (Btu/ft2/°F/nr/ft)

based on calculations from electrical resistivity

v/ith grain 12 -~ --

Against grain 3 -- -
Scleroscope Hardness

With grain 90 76 30

Against grain o7 59 32

(These properties do not indicate values or characteristics of other than
layered cloth Carbitex structures )
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Typical Carbitex Cones, 60° and 75° Wrap Angle

FIGURE B-~1.
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BIFLUID SPRAY TESTS OF INJECTORS

By R.J. FioRito

123




THE 7
marquardi VAN NUYS, CALIFORNIA Report 61}4'7

CORPORATION

This page intentionally left blank

12k




THE %
_%fquafdf VAN NUYS, CALIFORMIA Report 6147

CORPORATION

APPENDIX C
BIFLUID SPRAY TESTS OF INJECTORS

By R.J. Fio Rito

This Appendix C presents the results of bifluid (water/trichlorethylene)
flow characterization of the X24L40l Serial No. 002 injector assembly. These
bifluid spray tests were performed in the MJL Hydraulics Iaboratory. A sche-
matic diagram of the nonreactive fluid flow bench system is shown in Figure
¢-1. Photographs of the spray booth and a view of the injector during a test
are shown in Figures C-2 and C-3.

The spray collector grid consisted of a 7 by 7 matrix of 3/8-inch (0.929 cm)

ID tubes on 1/2-inch (1.27 cm) centers covering a 3 1/k-inch (8.26 cm) square
(Figure (C-2). The individual matrix tubes were drained to four racks of
graduated collection cylinders, as shown in Figures C-4 and C-5. These photo-
gravhs show the collected samples from a typical run (Run No. 13). The darker
colored fluid at the top of the cylinder is dyed water which is the fuel simu-
lant and the more dense fluid at the bottom is trichlorethylene which was used
to simulate the oxidizer. It is apparent that the fluids are immiscible, thus
allowing the volumetric measurement of each fluid in the collecting cylinders.

The tests were conducted by setting an inlet mixture ratio and total mass
flow of the fluid simulants and collecting the flow for a timed interval. A
typical run collection pattern is shown in Figure C-6. Each square of the
matrix represents a collection tube and the total mass collected per tube is
given with the corresponding trichlorethylene-to-water mixture ratio. The
approximate zone locations of the film injection jets is also indicated. It
will be noted that the mixture ratio tends to be lower in these regions.

A mixture ratio and mass profile bar graph taken from the center row
cross section of the data from Run 13 (Figure C-6) is shown in Figure C-7.
The profile follows the desired design contour except at the low mass flow
extremities which are more subject to collection errors.

The spray run data were evaluated in terms of an empirical mixing ex-
cellence parameter (E,) developed by J. Rupe of the Jet Propulsion Laboratory.
As defined in Figure C-8, E, is a value representing the departure of the
local spray samples from the nominal inlet mixture ratio value on a percentage
bagsis. The empirical equation accounts for the deviation of the mixture
ratio from the nominal ratio as weighted by the spatial mass flow distribution
of the spray. An IBM program was formulated to convert the data from the
collection matrix to the E, factor. This factor was used to compare the
spray characteristics for the Serial No. 002 injector as a function of in-
jection momentum ratio (fuel-to-oxidizer ratio). Thirteen runs were made,

The results are presented in Figure C-9O and Table C-I. It is seen that the
mixing factor for this injector configuration tends to increase with decreas-
ing mixture ratio (or increasing fuel-to-oxidizer momentum ratio).
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The mixing factor has been used to correlate injector combustion perform-
ance as shown in Figure C-10 using data for CLF /Ngﬂﬁ injectors from Rocketdyne
Report R-6028-2. The data of Figure C-10 indicgte combustion efficiencies
above 90% (neglecting nozzle losses) for all E, values above 80.

In general, the injectors meet hydraulic flow requirements with a high
degree of excellence. The Serial No. 002 injector demonstrated a bifluid
liquid phase mixing factor of from 86 to 90% at the design O/F (TCE/H,0) of
3.5 and mass flows corresponding to the 100-pound thrust level.

Figure C-9 indicates the like-doublet injector element trend of increasing
mixing factor with decreasing mixture ratio. The lower mixture ratios corres-
pond to higher fuel-to-oxidizer momentum ratio which appears to produce the
more optimal mixing characteristics.

Table C-ITI gives the pertinent properties of potential nonreactive pro-
pellant simulants.
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TABLE C-I

SUMMARY OF BIFLUID SPRAY TESTS OF THE SERTAL NO. 002 INJECTOR
100-1b Flox/LFG¢ Injector
x24h10 s/N 002

Run "0 “1cE o/F O/F
e pps | (em/sec)| pps | (gm/sec) | TCE/Hy0% |FLOX/Methane** E
6 | 0.1024 | (L6.45) | 0.3607| (162.61) 3.52 5.22 0.855
7 | 0.1023 | (46.40) | 0.3607| (163.61) 3.52 5.22 0.865
8 | 0.102h | (L6.45) | 0.3607 | (163.61) 3.52 5.22 0.862
9 | 0.0891 | (L0.42) 0.3722 | (168.83) 4,18 6.21 0.866
10 | 0.0895 | (40.60) | 0.3765| (170.78) h.22 6.25 0.8495
11 | 0.1145 | (51.94) | 0.3280| (148.78) 2.87 4,26 0.880
12 | 0.1148 | (52.07) | 0.3280| (148.78) | 2.87 b.26 10.8988
13 | 0.1017 | (46.13) | 0.3645 | (165.34) 3.59 5.33 0.90L

NOTE: Runs 1 through 5 were facility and procedural check runs.
* Sp. Gr., of TCE = 1.46; Sp. Gr. of Hy0 = 1.0

*¥ Sp. Gr. of FLOX = 1.442; Sp. Gr. of Methane = 0.hh7
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FIGURE C-1. Schematic of Nonreactive Fluids Flow Bench System
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FIGURE C-6. Injector Cold Flow Distribution, Run No. 13
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FIGURE C-7. Distribution of Injector Cold Flow in Center Row
Cross Section, Run No. 13
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FOR EMPIRICAL DETERMINATION OF LIQUID PHASE MIXING EXCELLENCE

Where

E
m

m

> S1 3 X NP

+

>
n

= £ O

100 [1 —(Zg __L__leWRﬁ'r - Zg Lo (R=r) ):l

R (R-1)

Mixing excellence, percent

Local Mixture ratio for r <R

Local mixture ratio for r > R

Nominal mixture ratio

Number of samples with r <R

Number of samples with r > R

Cross~-sectional area of sampling tube

Portion of spherical surface represented by sample
Area correction factor = A_ / A,

Total local weight flow rate of spray

Total nominal weight flow rate of spray

FIGURE C-8. Definition of Mixing Excellence Factor
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FIGURE C-9. Spray Characteristics of the Serial 002 Injector
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APPENDIX D

DESCRIPTION OF FIRING TEST FACILITY

SECTION D-I
GENERAL DESCRIPTION

The hot test firings of the rocket engine during this program utilized the
existing facilities at The Marquardt Rocket Test Laboratory. This laboratory
is located at an elevation of 4860 feet (1481 m), on the top of Magic Mountain
in the San Gabriel Range, 31 miles (49.9 Km) from Van Nuys, California. It was
established by The Marquardt Company for rocket testing with highly reactive or
toxic propellants that could not be easily handled in the more populated Van
Nuys and Saugus Test Laboratories. The property is leased from the U.S. Depart-
ment of Agriculture Forestry Service and has been improved with a capital ac-
gquisition of over a million dollars.

This facility has three rocket engine firing test areas. Cell M-1A is de-
signed for firing rocket engines of up to 10,000-pound (44,482 W) thrust size
in a vertical down position. Cell M-1B is a horizontal firing cell with thrust
capability of up to 15,000 pounds (67,723 N). Test Cell M-2 is arranged to fire
vertically downward and it is presently used for low thrust research and de-
velopment rockets. This complex was used for the subject program because it
containg high pressure fluorinated oxidizer and light hydrocarbon propellant
systems. In addition, there is a reaction control system test area, Cell M-3,
a Chemistry and Propellants Mixing Laboratory, and a combined General Purpose
and Control Room Building. Figure D-1 shows the arrangement of Cell M-2 and
Figure D-2 shows the firing position of this cell.

SECTION D-II
DETAIIL DESCRIPTION

A, FPluorinated Oxidizer System

The 960 psi (662 N/cmg) 30 gallon (0.1136 mj) fluorinated oxidizer system
in Cell M-2 was utilized in this program. FLOX was received in gaseous cylin-
ders and cryopumped into the liquid nitrogen Jacketed run tank for the Phase I
tests. TFor the Phase II tests, which required long run durations, & liquid
FLOX delivery of 1000 pounds (L453.6 Kg) was received and stored as liquid in
the shipping trailer. The run quantities were transferred to the 30 gallon
(0.1136 m3) run tank periodically as required.

B. Fuel System
The temperature controlled methane (or propane) fuel system in Cell M-2

was utilized in this program. Methane and propasne were received in liquid form
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and temperature conditioned to meet the program requirements. Temperature con-
ditioning was accomplished by blending ambient temperature gaseous nitrogen
with liquid nitrogen in heat exchanger sections to achieve the desired run con~
ditions.

The propellant system lines and control instrumentation are shown in Figure
D-3.

C. Instrumentation and Recording System

Cell M-2 is equipped with a 48 channel S.E.L. digital data system with ap-
propriate front end signal conditioning equipment such as thermocouple reference
Junctions, bridge balance units, power supplies, and calibration equipment.

This recording system is supplemented by a variety of portable equipment such
as oscilloscopes, oscillographs, pen type recorders, gages, etc.

D. Altitude Simulation System

The altitude simulation system of Cell M-2 consists of a straight tube no
flow diffuser capable of fully expanding a 12:1 rocket engine nozzle in thrust
ranges up to 100 pounds.
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APPENDIX E

MEASUREMENT OF HIGH SURFACE TEMPERATURES
USING A PHOTOGRAPHIC TECHNIQUE

By R.M. Davids and R. D. Lloyd
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APPENDIX E

MEASUREMENT OF HIGH SURFACE TEMPERATURES
USING A PHOTOGRAPHIC TECHNIQUE

By R.M. Davids and R. D, Lloyd

SECTION E-I
INTRODUCTION

The measurement of temperatures under dynamic conditions encountered dur-
ing engine firings has long been a problem in the aerospace industry and, for
the most part, has not heretofore been solved. Extreme temperatures, high gas
velocities, vibrational loads, and rotating parts have all but eliminated such
mechanical techniques as thermocouples, high temperature paints, etc. Optical
measurements have not been particularly accurate and like the mechanical
methods, are single point focusing, hence, temperature spikes and gradients
cannot be effectively measured.

The study described in this Appendix E was precipitated by the develop-
ment of an "extended range film" (XR) manufactured by Edgerton, Germeshausen,
& Grier, Inc. of Boston, Mass. (Reference E-1). This film was developed for
scientific and industrial color photography for use over an extreme range of
light conditions and it has the advantage of performing well under circum-
stances wherein exposures are unpredictable or where the brightness of the
subject varies over enormous limits.

A preliminary investigation in which L-605, disilicide coated molybdenum,
tungsten, and pyrolytic graphite were heated incrementally to known tempera-
tures and photographed with the XR film indicated that the method was feasible.
Subsequently, a program was initiated to establish the effect of several vari-
ables such as camera-to-object distance, bellows extension, and environmental
light conditions on the color density of the projected image. The determina-
tion of the effects of these variables constitutes the subject matter of this
appendix.

SECTION E-1I
SUMMARY

A novel method for measuring temperatures above 1600°F (11Lh°K) to well
over 4000°F (2478°K) has been developed at Marquardt. The method incorporates
a radiation sensitive color photographic f£ilm which virtually cannot be over
exposed. By projecting the heated image on this film through a calibrated
lens system and subsequently measuring the density of the projected color, an
entire temperature profile can be obtained with an accuracy of % l%. Still
or motion picture photography can be used as desired.
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A detailed description of the method and its standardization is included
in this appendix.

SECTION E-III
PROCEDURE

In order to generate a reliable procedure for the measurement of elevated
temperatures using photographic techniques, an investigation and calibration of
those variables which could possibly affect the end result was necessary. Vari-
ables of particular concern were: 1. color density versus temperature con-
version, 2. effect of densitometer filters cn signal response, 3. camera-to-
sample distance, 4. temperature versus density under various environmental
light conditions, and 5. color density versus bellows extension.

A. Test Equipment

Testing was conducted in the laboratory using the following equipment:
1. 70 mm Camera, 'Camerz" Model 35, Photo-Control Corp.
2. Potentiometer, Leeds and Northrup Type K-3 (accuracy > 0.0l%)

3. Digital-Millivolt Meter, Cimron Model 74OOA (checked before
each test against a certified K-3 potentiometer)

b, Photomatic Automatic Optical Pyrometer (Transfer standard)
5. T-24 Pyrometer Calibration Lamp, NBS No. 176959

The test chamber (Figure E-1) consisted of an 18-inch (45.72 cm) diameter
Pyrex bell jar situated on a metal platform. Glass arms, capped with 0.125-inch
(0.318 cm) optical grade quartz, provided viewing ports in the jar for optical
measurement. A vacuum pump attached to the system provided low pressure en-
vironments when it was necessary to reduce oxidation. Two water cooled copper
electrodes, insulated from the metal base by Teflon washers, produced resis-
tance heating of the tube.

Vacuum measurements were made with a thermocouple gage which was cali-
brated with a McLeod gage.

B. Specimen Design and Fabrication

Tubular specimens, each approximately 6 inches (15.24 cm) long, and of
various diameters, depending upon the availability of material, were used in
all tests. A hole was drilled through one wall of the tube in the center and
normal to its longitudinal axis. The diameter of the hole varied in accord-
ance with the tube diameter. This was necessary to produce the correct "black
body" conditions (see References E-2, E-3, and E-L). The surface finish of
the tubes was that of the received stock.
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C. Experimental and Calibration Method

The tubular test specimen was placed between the copper electrodes in the
test apparatus. Depending upon the test cell environmental conditions to be
simulated, the specimen was either left exposed to the atmosphere or the bell
jar was inserted in place so that one of its quartz windows was in line with
the small hole in the tube. If vacuum was desired, it was produced to a 107" mm
Hg level. The automatic pyrometer was next positioned so that it sighted
through the quartz window into the hole in the tube. A 70 mm camera loaded
with XR £ilm was then positioned so that it was focused through the other quartz
window on the outer tube wall 180° from the hole. The tube was then resistance
heated and the true temperature (under black body conditions) was measured by
the automatic pyrometer. The camera was actuated when the tube was at steady
state temperature. The film was subsequently processed and the color density
was measured with a densitometer.

A series of tests were conducted with this procedure to determine the
effects of the aforementioned variables on the density and subsequent tem-
perature conversion. These tests are outlined below:

1. Color density versus temperature conversion - Measurements were
taken every 100°F (55°K) from 1600°F (1144°K) up on various
materials such as phenolics, disilicide coated molydenum, and
pyrographite. A preliminary investigation involving L-605 and
tungsten, was conducted to determine the feasibility of the
test method.

2. Filter color versus signal response - The effect of a red and
green filter in the densitometer lens system on the density
signal response was determined for pyrolytic graphite at
temperatures ranging from 1600° to 4L500°F (1144° to 2755°K).

3. Camera-to-sample distance - Various tests were conducted vary-
ing the distance with the aid of a plus 2 lens. While main-
taining a constant bellows extension of 3 E/M inches (9.53 cm),
tests were run with the camera lens at a fixed distance from
the tube. A plus 2 lens effectively changed this distance while
a l-inch (2.54 cm) thick cell window placed in front of the
normal lens simulated a test cell run.

4, Temperature versus color density under various lighting con-
ditions - Three conditions of environmental light were investi-
gated to determine their effect on the color density, using a
green filter. (Experiments were conducted using a standard
tungsten calibration lamp.) These conditions were black (no
external lighting), shade, and, direct sunlight.

5. Color density versus bellows extension - Tests were conducted on

a disilicide coated molybdenum sample where density was measured
a8 a function of bellows extension. When the camera lens is
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vhysically moved to or from the object a bellows adjustment

becomes necessgsary. To determine the effect on the temperature
measurement (by means of density), distances ranging from 1.0
to 4.5 inches (2.54 to 11.43 cm) were used at 2200°F (1476°K).

SECTION E-IV
RESULTS AND DISCUSSION

The results obtained from the tests previously described showed definite
effects of bellows extension, type of filter, and external light conditions on
the color density. No effect was observed for various sample-to-camera dis-
tances at a fixed bellows extension. These results are detailed below:

l.

Color density versus temperature conversion - The density-tempera-
ture calibrations for various materials are presented in Figures
E-2 and E-3. The results showed that a somewhat linear relation-
ship exists and appear to be dependent on the material emissivity
as indicated in Figure E-2. Hence, duplication of the test me-
terial and surface condition is necessary for calibration.

Filter color versus signal response - The curves illustrated in
Figure E-3 readily indicate the variance of film color density
when red or green filters are used. Since the phenomenon 1is
purely dependent on the color of the developed film the material
photographed is not a variable and hence it holds true for all
materials.

The desired situation for greatest accuracy when measuring density
is to have a large density change over a small temperature range.
Tt is evident from Figure E-3 that the green filter is better for
calibration up to 3100°F (1978°K) but the red filter is superior
from 3100° to 4500°F (1978° to 2255°K).

Camera-to-gsample distance - Varying the distance of the lens to

the sample while maintaining constant bellows extension, does not
affect the color density, as reflected in Table E-I. Also, there

is no definitive effect on density when the photograph is taken
through a l-inch (2.54% em) cell window, representing actual oper-
ating conditions. This means that this procedure can be accomplished
outside the test cell with no degradation of results.

Temperature versus color density under various lighting conditions -
The data reflected in Figure E-4 point out that direct sunlight has
a decided effect on the density at temperatures up to 2400°F
(1589°K). The flatness of the initial portion of the curve would
not effectively provide accurate measurements in that region.
Whether the sample or engine part is photographed in complete dark-
ness or in shaded sunlight is inconsequential, since the curves
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fall on top of each other from 1600° to 3000°F (11L44° to 1922°K).
The data also suggest that there will be no additional variation
at temperatures above 3000°F (1922°K).

Color density versus bellows extension - Changing the lens-to-film
distance by bellows movement does not change the density. This

is illustrated in Figure E-5. The test was run at a constant
temperature of 2200°F (1478°K). It is easily seen that as the
bellows is opened up the density decreases in intensity. This
point is very important since it means that whatever extension

is used for an engine run must be used during the subsequent
calibration. When a bellows extension has been chosen, focusing
should be done with the aid of plus lenses.

SECTION E-V
RECOMMENDED CALIBRATION AND TEST PROCEDURE

The following calibration and test procedure was derived from the results
of this investigation. It should be noted that some of the steps are con-
servative in nature due to lack of data, but they are functional.

Test Cell

1.

Photograph the heated object using a 70 mm camerse, loaded with XR
film (Edgerton, Germeshausen & Grier, Inc.). If time dependent
temperature profiles are desired, then lapse-time photography can
be employed.

2. Note the bellows extension setting.

3 Photograph either in complete darkness or under shaded conditions.
Photographing in direct sunlight can be accomplished if this same
condition is reproduced during laboratory calibration. However,
it must be realized that the minimum detectable temperature under
these conditions is 1800°F (1255°K).

b, Note the material and coating of the part involved.

Laboratory

1. Obtain a tubular specimen of the same material and coating as
the actual part.

2. Drill a hole, normal to the longitudinal axis, through one wall.
The hole size is dependent on the tube diameter.

3. Place the tube between heating electrodes.
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L, Depending upon the atmosphere or enviromment during the test,
either place the bell jar over the assembly or omit it.

5. If reduced pressures are required, pull a vacuum at this time
(make sure the bell jar is so positioned that one of the quartz
windows is in line with the hole in the tube).

6. Focus the Photomatic Automatic Optical Pyrometer on this hole.

7. Focus the same 70 mm camera loaded with the same film that was
used for the actual test, through the other quartz window on
the side of the tube opposite the hole.

8. When all equipment is operational, heat the tube to known true
temperatures (as read under black body conditions by the auto-

matic pyrometer) and photograph the indicated surface temperature.

9. Process the film - The test and calibration will be on the same
film, thus eliminating any process variables.

10. Measure the density for temperature calibration using a green
filter for temperatures up to 3100°F (1978°K) and a red filter
over that temperature.

11, Draw a calibration curve of color density versus true temperature.

12. Measure the color density on a test portion of film (see
Figure E-6).

13. Referring to the calibration curve, calculate the operating
temperature.

1h. Make up a part overlay with temperatures indicated (optional).

15. Print the part and the overlay for a pictorial representation of
the test (optional) (see Figure E-7).

NOTE: ILaboratory test eguipment should be calibrated periodically
using a National Bureau of Standards tungsten lamp.

SECTION E-VI
CONCLUSIONS

1. The photographic temperature measurement technique is a reliable method
of obtaining temperature profiles above 1600°F (1144°K).

2. The accuracy of such a method is within l%.
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3. A clear permanent record of hot spots, cracks, etec., is an added
advantage of this technique.

4, Test accuracy is poor below 2400°F (1589°K) when the heated object is
photographed in direct sunlight.

5 Shade or total darkness provides the same desired result for photo-
graphing the test part.

6. A green filter on the densitometer is optimum up to temperatures of
3100°F (1978°K). A red filter is optimum above this value.

7. The camera bellows extension must be kept constant during a test
sequence.

8. Color density is a function of the emissivity and temperature of the
heated material.

SECTION E-VII

REFERENCES
E-1. Edgerton, Germeshausen, & QGQrier, Inc. Data Sheet for XR
(Extended Range) Film, undated.
E-2. Devos, J.C., "Physica XX", 1964, pp 669-689.
E-3. Wood, W.D., H.W. Deem, and C.F, Iucks, "Thermal Radiative

Properties of Selected Materials", D.M.I.C. Report No. 177,
Vol. 1, Nov. 1962, p 9.

E-L. Kostkowski, H.J., and R.D. ILee, "Theory and Methods of Optical
Pyrometry", National Bureau of Standards Monograph Ll.
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TABLE E-I

EFFECT OF CAMERA-TO-SAMPLE DISTANCE ON DENSITY RESPONSE
FOR C-103 COLUMBIUM ALLOY

Test Temperature
Camera-to-Sample Distance Color Density
°F °K
0 Reference 1600 114k 0.33
1700 1200 0.35
1800 1255 0.1
1900 1311 0.50
2000 1366 0.67
21.00 1422 0.92
2200 1478 1.1k
2300 1533 1.351
2400 1589 1.51
2500 164h 1.72
2 lens 1600 11hh 0.33
1700 1200 0.35
1800 1255 0.40
1900 1311 0.50
2000 1366 0.67
2100 1422 0.90
2200 1478 1.12
2500 1533 1.33
2400 1589 1.51
2500 1644 1.71
l1-inch thick cell window 1600 11hh 0.33
1700 1200 0.35
1800 1355 0.h1
1900 1311 0.50
2000 1366 0.66
2100 1422 0.90
2200 1478 1.13
2300 1533 1.31
2400 1589 1.52
2500 1644 1.69

Bellows extension = 3 3/ inches (9.55cm)
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TEST NO. 3434
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RUN NO. 24
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- DATE  7/19/66

V4388~
FIGURE E-7. Typical Chamber (Columbium) Evaluation using XT Film
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